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Abstract

The emotion recognition which almost all humans take for granted is a great challenge in the field of

Human Computer Interaction.

The current work develops several tasks within the field of emotion recognition, such as the develop-

ment of a new self-assessment annotations tool, an analysis of the minimum Sampling Frequency (SF)

required for the acquisition of Electrodermal Activity (EDA) and the benchmarking of a new device to

perform physiological data acquisition in group settings. Although, the most relevant task is the evalua-

tion of collective group emotions while watching a long-duration uncalibrated audiovisual content in the

wild, using EDA signals. The present work aims to analyze the similarities in simultaneous annotations

across different participants, along with an analysis of the correspondent EDA signals and develop a

new approach to identify time regions where the audience reacted with higher intensity based on the

EDA data and unsupervised learning techniques.

The annotations performed by the participants did not follow the expected, revealing some limitations

in the annotations phase. Furthermore, the evaluation of EDA data during simultaneous annotations

revealed a tendency to increase over the period of the annotations. Although, the signals displayed few

similarities during these time periods.

Regarding the application of clustering algorithms, the best performing methodology was hierarchical

clustering with average linkage, providing a higher number of clusters, with more areas in which the

audience had a more intense emotional reaction.

Keywords

Emotion recognition; Electrodermal activity; Emotional self-assessment; Valence-Arousal scale; Clus-

tering algorithms.
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Resumo

O reconhecimento de emoções que quase todos os seres humanos consideram natural é um grande

desafio no campo da Interação Homem-Computador.

O presente trabalho, desenvolve várias tarefas dentro do campo de reconhecimento de emoções,

tais como, o desenvolvimento de uma nova ferramenta de autoavaliação emocional, uma análise da

Sampling Frequency (SF) mı́nima necessária para a aquisição de Electrodermal Activity (EDA) e o

benchmarking de um novo dispositivo para realizar aquisição de dados fisiológicos em configurações de

grupo. No entanto, a tarefa mais relevante é a avaliação das emoções coletivas durante a visualização

de um conteúdo audiovisual não calibrado de longa duração. O presente trabalho tem como objetivo

analisar as semelhanças em anotações simultâneas entre diferentes participantes, juntamente com uma

análise dos sinais EDA correspondentes e desenvolver uma nova abordagem para identificar regiões

onde o público reagiu com maior intensidade com base no EDA e técnicas de aprendizagem automática.

As anotações realizadas pelos participantes não vão de acordo com o esperado, revelando algumas

limitações na fase de anotações. Além disso, a avaliação dos dados de EDA durante as anotações

simultâneas revelou uma tendência para aumentar ao longo do perı́odo das anotações. Ainda assim,

os sinais exibiram poucas semelhanças durante esses perı́odos de tempo.

Em relação à aplicação de algoritmos de clustering, a metodologia que revelou o melhor desempenho

foi o clustering hierárquico com linkage médio, proporcionando um maior número de clusters, com mais

áreas em que o público teve uma reação emocional mais intensa.

Palavras Chave

Reconhecimento de emoções; Atividade eletrodérmica; Autoavaliação emocional; Escala de valência-

excitação; Algoritmos de clustering.
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1.1 Motivation

Humans can express emotions to each other based on body language, facial expressions and speech,

therefore emotions can be recognized based on these traits which occur naturally. This is why face to

face conversations are usually more effective, since they involve a direct interaction between the par-

ticipants, in which individuals can express and recognize each other’s expressions [10]. Nevertheless,

these cues do not reliably represent emotions, since these can be influenced by factors such as envi-

ronment, cultural background, personality or mood, and they can also be effortlessly faked. Fortunately,

emotions also have physiological manifestations.

The Autonomous Nervous System (ANS) mediates the body response to internal or external stimu-

lus, thus, modulating the physiological manifestations of the emotion felt [7]. The physiological manifesta-

tions are expressed in physiological signals such as the Electrocardiogram (ECG), Electroencephalogram

(EEG), Electrodermal Activity (EDA), and others. The link between emotions and physiological re-

sponses has advantages for emotion recognition. These responses are detectable, easily collected

using wearables in a non obtrusive way, and they can reflect human emotion more reliably, since they

can not be controlled or faked [2,11]. With this in mind, it was considered that physiological signals are

the preferable method to perform emotion recognition [7].

To study emotions, a first step should be to understand the concept of emotion. Over the years,

several definitions have been proposed, although no consensus has yet been reached. Generally, the

most accepted concept is that emotions can be described according to two different models: discrete

model and continuous (or affective) model. In the discrete model, the emotional experiences are de-

scribed based on a list of words to label emotions into categories. However, the list of words used for

this description is still widely debated. Some researchers propose 6 basic emotions [12] (Happy, Sad,

Anger, Fear, Surprise and Disgust), others propose 8 basic emotions [13] (Joy, Trust, Fear, Surprise,

Sadness, Anger, Disgust and Anticipation), but many other models exist [14].

This discretization of emotions can be difficult, since the distinction boundary between two emotions

is often blurred, and the meaning of the chosen words are culturally dependent [7]. On the other hand,

continuous models aim to describe emotions based on continuous scales addressing two factors: the

correlation between distinct emotions (e.g. Grief and Sadness are more similar than Happiness and

Sadness), and the quantification of a certain emotion (e.g. it should be possible to differentiate between

Sad and Very Sad). Russel et al. [15] proposed a 2D Valence-Arousal space, in which valence describes

how pleasant an emotion is, and arousal describes the intensity level [14]. Although other models such

as the valence-arousal-dominance have been suggested [16], the valence-arousal model is the most

widely accepted [3].

A factor which greatly influences emotions is the group effect. Humans are highly social beings

that tend to live in complex social structures. Thus, many emotions are experienced in social contexts

2



where there can be several interactions between group members. The group effect can have both a

positive or negative impact on the emotional states experienced by the participants. On the negative

side, crowd psychology can shape individual emotions leading to a more extreme behaviour, on the

other hand, this effect can also create bonds between the members leading to an increase in the group

effectiveness [17]. Previous work on emotion recognition focuses mainly on the analysis of emotion in

an individual setting and in controlled environments, ignoring important dimensions. Hence, to evaluate

emotions experienced by the subjects in a group setting, it is necessary to collect the data simultaneously

from all participants.

The present work aims to fill a gap in emotion analysis by evaluating the emotional states in a group

setting using long-duration uncalibrated elicitation content, i.e. movies. Although most studies focus on

analysing emotions in an individual setting, being in a group environment can have different effects on

the experienced emotions. The analysis of the emotional states in group setting was carried out based

on EDA data acquired simultaneously from all participants. In addition, this work also seeks to develop

a emotion self-assessment tool for smartphones. This tool is developed based on the Valence-Arousal

model, enabling the users to perform their emotional self-assessment in a group setting with any sort of

elicitation material, with minimal distraction.

1.2 Objectives

The objectives of the current work are related to the analysis of emotions in group settings using long-

duration uncalibrated elicitation materials:

• Study the emotional dynamics in a group setting in a real-world setting

• Design an experimental protocol to elicit emotions in a group setting using long-duration, uncali-

brated video content;

• Collect EDA data and the corresponding emotional self-assessments;

• Implement the necessary steps to preprocess and detect the fiducial points in EDA data;

• Analyse emotional annotations, comparing simultaneous annotations and establishing a corre-

spondence between the annotations and the elicitation which triggered them;

• Select and extract the most relevant features from the EDA signal;

• Use machine learning methods to categorize the parts of the elicitation content where the audience

had a similar emotional reaction;

• Compare the main findings of this work with the approaches found in the literature.

• Develop a smartphone application to perform the emotional self-assessment in a real-world sce-

nario (i.e. for both individual and group settings, for any type of elicitation material);

3



• Validate the performance of the developed application using the System Usability Scale (SUS) and

the NASA Raw Task Load Index (NASA-RTLX);

1.3 Contributions

The current work provided the following contributions to the field of emotion recognition:

• Published and presented the paper entitled ”Smartphone-based Content Annotation for Ground

Truth Collection in Affective Computing” at the 2021 ACM International Conference International

Media Experiences [18];

• Abstract accepted and paper ”Impact of Sampling Rate and Interpolation on Photoplethysmogra-

phy and Electrodermal Activity Signals Waveform Morphology and Feature Extraction” under revi-

sion in the Neural Computing and Applications Journal (Q1) under the Topic Collection ”Computational-

based Biomarkers for Mental and Emotional Health”;

• Database with experimental data acquired in group settings using uncalibrated long duration elic-

itation content, including EDA signals and emotional annotations (Valence, Arousal and level of

annotation uncertainty);

• Development of a list of elicitation content, consisting mainly of recent movies (from the last 3

years), and encompassing several genres to elicit a wide range of emotions;

• Implementation of EDA outlier removal and feature extraction methods, proposed to integrate the

public biosignals processing library BioSPPy [19];

• Emotional group dynamics analysis based on the self-assessment annotation performed by the

participants and evaluation of the individuals and audience reaction using EDA data and machine

learning algorithms;

• Development of a smartphone application for emotional self-assessment in a group setting publicly

available in the Google PlayStore 1, 2;

• Validation of BITalino R-IoT data quality against a benchmark device (BITalino (r)evolution)

• Analysis of the minimum Sampling Frequency (SF) required to acquire a quality EDA signal.

1.4 Thesis Outline

The present work is divided into seven chapters, organized in the following manner. Chapter 2 portrays

the relevant theoretical background for this work, namely: 1) models used to define emotions; 2) as-

sessment methods used to evaluate the participant’s emotional state; 3) relation between emotion and

1https://play.google.com/store/apps/details?id=com.emoteu.app
2https://play.google.com/store/apps/details?id=com.emoteu2.app
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the ANS, as well as the physiological manifestations of emotions; 4) description of the EDA signal, its

characteristics and relation with emotions; and 5) different elicitation materials which can be used to

trigger emotions.

The next four chapters describe the main problems addressed by this work. Each chapter starts

with a motivation, followed by the state of the art of that topic, along with the methodology description,

results and discussion of the developed work (except for Chapter 3 which does not have results nor

discussion). Chapter 3 describes the methodology for experimental data acquisition in a group setting,

presenting the data acquisition and emotional annotation tools, along with the setup used to present the

elicitation content and store the acquired data. Chapter 4 summarizes the emotional analysis performed

on the collective data. This chapter contains 2 different analysis: the first consists in evaluating the

annotations given by the participants and the assessment of the similarities of synchronous annotations

across different participants. The second analysis suggests a new approach to identify time regions

where the participants and the audience reacted with higher intensity, based on EDA data and unsu-

pervised machine learning techniques. Chapter 5 presents the development of the real-time collective

emotional self-assessment tool, starting with a description of existing annotation tools, and followed by

the description of the different steps taken in the development of this application, ending with real-world

evaluation of this tool.

Throughout the development of the current work some limitation where identified, namely, the low ac-

quisition frequency of the Future Media Convergence Institute (FMCI) Xinhua Net device, and limitations

in the emotion recognition performance when using a single physiological sensor (EDA). Taking this into

consideration, Chapter 6 presents an analysis of the minimum SF required for the acquisition of the EDA

signal, along with a benchmarking of a new device, the BITalino R-IoT, capable of acquiring EDA and

Photoplethysmogram (PPG) data simultaneously across several participants. Finally, Chapter 7 draws

the main conclusions obtained throughout the current work.
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This chapter contains the relevant theoretical background regarding the field of emotion recognition.

Throughout the years emotion have been described using different theoretical models, thus Section 2.1

presents an overview of the most common theoretical models to describe emotions.

Then, considering the different manifestations of emotions, Section 2.2 introduces the different modal-

ities typically used to assess them. Afterwards, the relation between emotions and the ANS is described

in Section 2.3, particularly the connection between emotion and physiological signals. A detailed pre-

sentation of the EDA signal can be seen in Section 2.4, containing the relevant characteristics of this

signals for the current work. Lastly, Section 2.5 provides an overview of the different elicitation material

used to trigger emotions.

2.1 Emotion Models

The need and desire to understand human emotions dates back to the philosophers in Ancient Greece,

such as Plato and Aristotle [20]. In the Roman Empire, Cicero and Graver created an emotional model

discretizing emotions under four categories: Fear, Pain, Lust, and Pleasure [1,7]. Hundreds years later,

Wundt [21] proposed a completely different model of emotions describing all emotional states as a single

point in a three-dimension space: pleasure-displeasure, excitement-inhibition, tension-relaxation [1].

These represent the first discrete and continuous models of emotion, respectively.

Over the years, several other definitions have been proposed, although no consensus has yet been

reached. Generally, the most accepted concept is that emotions can be described according to discrete

or continuous models. Other models exist, such as the Appraisal Theory, which describes emotions

as a process rather than a state. However, these models are harder to integrate into machine learning

algorithms to identify emotions [22,23], reason for which the discrete and continuous models are still the

most widely used. [1].

Discrete Emotion Model

In the discrete model, emotions are categorised. Categories are represented by words, which are asso-

ciated with a certain significance in expressing emotions, and several taxonomies have been proposed

throughout the years. Ekman [12] argues that emotions are shared between cultures and, as such, they

can be universally recognised. In his view, emotions arise from evolutionary physiological and commu-

nicative functions. The manifestations of emotions could help in life or death scenarios, e.g. a facial

expression of fear could imply a situation of danger and warn people nearby. Furthermore, Ekman listed

six discrete basic emotions, each having a distinct physiological pattern: Joy, Sadness, Anger, Fear,

Disgust, and Surprise [12]
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Figure 2.1: Plutchik’s color wheel of emotions. [1] Figure 2.2: Russel’s circumplex model of emotions. [2]

Plutchik [13] created a taxonomy to classify discrete emotions, known as ’wheel of emotions’ [1],

since it was based on a wheel incorporating eight primary emotions: Grief, Amazement, Terror, Admira-

tion, Ecstasy, Vigilance, Rage, and Loathing. Furthermore, emotions can have different intensity levels,

thus, the primary emotions are located in the center of the wheel, while weaker emotions occupy the

extremities as shown in Figure 2.1. In his taxonomy, emotions could be mixed to form new and more

complex emotions.

These models are based on describing emotions with a single word. However, this discretization can

be difficult to perform, since the distinction boundary between emotions can be blurred, and complex

mixed emotion scan be difficult to label into a single word. Furthermore, the meanings of the chosen

words are culturally dependent, so similar emotions could be described using different labels [7,24]. As

such, it can be hard to implement this model, since it is necessary to reduce a wide range of emotions to

a finite amount of labels and, even in cases where the model is applied, it may not produce completely

reliable results due to the cultural dependence in the meaning of such labels.

Continuous Emotion Model

To overcome the difficulties found in the discrete models of emotion, a new concept of describing emo-

tion emerged. This concept consisted of mapping emotion into a multidimensional space [1]. These

dimensional spaces must address two factors: the correlation between distinct emotions, and the quan-

tification of a certain emotion.

Similarly to the discrete models, several different dimensions have been proposed to measure emo-

tions. Russel’s two-dimension model is a popular approach [15], in which emotions are characterized

as a discrete point in space composed of two axes, valence and arousal. The Arousal axis describes

emotions in terms of intensity (e.g. how energised one feels), while Valence axis portrays emotion in
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terms of how positive or negative an emotion is. In Figure 2.2 it is possible to see a schematic represen-

tation of this model. The Valence-Arousal model was later extended by Mehrabian [16], adding a new

dimension called Dominance to better describe the consciousness of emotion. This dimension aided in

the distinction between emotions such as Anger and Fear.

In emotion recognition, the Valence-Arousal is the model which is most frequently used [1,7] due to

several reasons. From a machine learning point of view, this model has low complexity and allows for

different classification problems (e.g. multiclass classification with low/medium/high arousal or valence,

or a classification based on the four quadrants of emotion) [1]. Another reason for the popularity of these

models is the simplicity of emotion assessment, since it is already integrated in validated and vastly used

questionnaires, such as the Self-Assessment Manikins (SAM), and it can also be easily integrated into

a new forms of questionnaire that can be understood across cultures [3].

2.2 Assessment Methods

For performance assessment when working with machine learning models, a ground truth value is re-

quired. To acquire the ground truth emotional value, one common practice is to annotate the individual’s

emotions, which can be done through internal annotation and/or external annotation. Internal annotation

methods, also called self-assessment methods, involve asking the participants to report the emotional

state felt during the experiment.

Although this method can be easy to implement and replicate, the annotations acquired may not be

completely accurate due to the influence of subjective factors during the annotations. Namely, (1) par-

ticipants can have difficulties expressing their emotions into words and/or scales, (2) they may hesitate

to give honest answers when such answers are socially undesirable, and (3) the rationalizations of their

answers may affect the perceived emotion [25]. Furthermore, for some participants this method may

be intrusive, causing the subject to unreliably report their emotion to preserve their privacy; this can be

surpassed with the implementation of data protection measures reassuring the participants’ privacy [26].

On the other hand, in external annotation methods, also called implicit assessment methods, an external

subject assesses the subject affective state based on the analysis of observable factors. In this method,

the external subject can be easily deceived by faking observable manifestations of emotion [27].

Both methods have been shown to have a significant correlation between the two [27], however, the

self-assessment method is still the most applied emotional annotation approach, usually based on a

questionnaire presented to the subject [7, 28]. Several questionnaires can be used for this annotation,

such as the SAM, Positive Affect and Negative Affect Schedule (PANAS), or the Affect Grid described

below. Despite being the most common, others like the Photo Affect Meter (PAM) [29], Ecological

Momentary Assessment (EMA) [30], are also frequently found in literature.
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Self-Assessment Manikin

The SAM is a questionnaire that provides a non-verbal, graphical representation for cross-cultural mea-

surement of emotional response [7]. In the representation of this scale (Figure 2.3), it is possible to see

three rows with five images, each row represents a different dimension (Valence; Arousal and Domi-

nance); the questionnaire is answered by placing an ’x’ over any of the five images, or between any two

figures, which results in a nine-point scale. The Valence axis ranges from a smiling figure to a frown-

ing figure; in the Arousal axis the manikins range from an excited figure to a sleepy figure; and, lastly,

in the Dominance axis, the manikins range from a small figure to a very large figure, representing the

range of feelings between being controlled or submissive, to being in control or a powerful feeling [3].

Furthermore, this questionnaire can be adapted by using different scales and/or figures which allows the

acquisition of annotations without being skewed by cultural perceptions of emotions [31]. Although this

questionnaire includes the annotation of the Dominance dimension, such dimension is not commonly

used.

Figure 2.3: The Self-Assessment Manikin (SAM) used to annotate the affective dimensions of Valence (first row),
Arousal (second row) and Dominance (third row) [3].

Additional Questionnaires

The PANAS is a questionnaire with two distinct axes, the Positive Affect (PA) measures the level of

Enthusiasm, Activeness and Alertness of the participant, thus a high level of PA characterizes a state of

high energy, full concentration and pleasurable engagement, in opposition a low level of PA characterizes

a state of Sadness and Lethargy. On the other hand, the Negative Affect (NA) measures subjective

distress and unpleasurable engagement, which include different states, such as Anger, Disgust, Guilt,

Fear and Nervousness, thus a low level of NA represents a state of calmness and serenity [32]. This
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questionnaire is represented by 20 terms (10 per axis), representing different feelings and emotions, and

the participant must indicate the association between his emotional state and each term with an integer

level from 1 to 5 (1 - Not at all, to 5 - Extremely) [27].

A different approach, proposed by Cowie et. al [33], has the users annotating their emotional state

by moving the cursor on a computer screen displaying a 2D circular space. This display has verbal

landmarks at the periphery and within the the circle, to ensure that participants could easily relate

the position to a categorical description of emotion. Furthermore, the cursor is also colour coded,

following the colour proposed in Plutchik’s color wheel of emotions(Figure 2.1) [13]. Another approach

for emotion annotation was proposed by Lopes et. al [34]; this annotation technique is based on a

”wheel-like” hardware which the participants can use to increase or decrease the intensity of a single

emotion dimension. This approach uses an unbounded annotation, which means that the annotation

has no upper or lower limit, allowing users to adopt a range of values as broad as they wish. This

revealed to achieve better results than with bounded annotations in [35]. These two methods enable a

continuous annotations that, in turn, allow the analysis of the evolution of the emotional state throughout

the elicitation content.

Assessment based on Physiological Signals

Unlike the previous methods that require a subject to annotate emotions on a certain questionnaire,

emotions can also be assessed based on body and facial expressions. We conduct our social interac-

tions based on the behavioural traits that the people around us express, either through body language,

facial expression and speech [24], which are the simplest methods to express and identify emotions in

daily life. However, these demonstrations of emotion can be faked, hence not representing emotions

reliably.

Emotions can have three different types of manifestations: behavioural, e.g. the smile a person ex-

presses when told a joke; physiological, the sweating and dry mouth experienced when being anxious

or afraid [1]; and chemical, in stressful experiences there is an increase in the production of hormones

such as cortisol, oxytocin and progesterone [36]. As it was previously described in Section 2.2, assess-

ing emotion through their behavioural and chemicals manifestations can be unreliable and/or intrusive

methods since external manifestations of emotion can be faked, and analysing chemicals manifestations

requires drawing blood or saliva. So, the preferred method to assess emotions is through physiological

manifestations.

A viable alternative to assess one’s emotional state is to use physiological signals since, as presented

in Section 2.3, emotions are linked to physiological changes, one can also use physiological signals to

assess emotions. The use of these signals allows the implementation of non-intrusive methods to assess

emotions. Their acquisition only requires the application of electrode on the skin of the participant, which,
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although may restrict certain movements, is still a manageable and reliable method; the manifestation

of emotions in physiological signals is an unconscious process that is difficult to manipulate [37].

2.3 Autonomous Nervous System

Emotions are reflected by responses of the ANS and the limbic system (in particular the amygdala).

The amygdala is the region of the limbic system which is primarily responsible for the regulation of the

perception and reaction to aggression and fear. It has connections with facial muscles, which perceive

and express emotions, and other bodily systems related to emotions; it also regulates the release of

neurotransmitters related to stress and aggression [38].

The ANS is divided into three branches: the Sympathetic Nervous System (SNS), the Parasympathetic

Nervous System (PNS), and the Enteric Nervous System (ENS). The SNS is associated with the ”fight-

or-flight” response, thus being activated during physically or mentally stressful situations. This system

is responsible for increasing Heart Rate (HR) and strength of cardiac contractions, increase in respira-

tion rate and bronchial tube dilatation, pupils dilatation, decreased salivation and digestion, and, lastly,

adrenaline and glucose release. During high arousal states, like an angry situation, one usually ex-

periences the heart pounding, troubles breathing, a sick feeling in the stomach, etc.; this is the result

of the activation of the SNS [38]. On the other hand, the PNS is associated with the ”rest-and-digest”

functions, being responsible for the homeostasis of the body. This system is responsible for slowing

the HR, decrease blood pressure, increase salivation and digestive system activity, muscle relaxation,

pupils constriction and increase in urinary output [1, 7]. Lastly, the ENS is responsible for the digestive

functions of muscle contraction/relaxation, secretion/absorption, and intestinal blood flow (e.g. this sys-

tem is responsible for the movement of water and electrolytes across the intestinal wall) [39], hence not

very related to the response of the ANS to emotions.

Although the SNS and PNS branches have opposite functions, they both work in harmony, for ex-

ample, in a potential threat, the SNS raises the HR, and after the threat is over the PNS brings the HR

back to a rest state. Therefore, a good way to measure the activity of these two branches is to measure

the Heart Rate Variability (HRV), a high HRV implies an increased activity of the SNS and a low HRV

implies an increased activity of the PNS. So, a good way to evaluate the activity is through the PPG or

ECG signals from which it is possible to extract the HR. Another way to measure the SNS activity is to

measure the EDA, because this signal is solely stimulated by the SNS.

The emotional physiological responses can be assessed with several different physiological signals:

ECG [1,24]; PPG [1,7]; Respiration [37]; Skin Temperature [1,7]; Electromyogram (EMG) [40]; EEG [41];

EDA [7,42]

The work developed where is going to be focused on the analysis of emotion in group settings
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using physiological data. However, at the moment there are not many viable solutions for simultaneous

data acquisition in several participants. One of the existing options is the device FMCI [43], which

only acquires the EDA signal. This signal has been shown across several pieces of research to be

correlated with the emotional state of the user (being especially correlated with the arousal dimension

of emotions) [44, 45]. Furthermore, this signal is the most commonly applied in researches in the field

of emotion recognition. Some studied have also been conducted using physiological data only from the

EDA and achieving very promising results [6, 42, 46]. So, for these reasons the EDA will be the main

physiological data source used in the context of this thesis.

As it is possible to see, the ANS is responsible for a wide variety of functions, from a body regulator,

through homeostasis, to an activator, by allocating body resources to better respond to stimulus, amount

many order functions which were not mentioned here. So, due to this multi-functionality of the ANS, it is

hard to establish a direct correlation between a subject’s emotional state and their current physiological

signals since a change in these signals can be a result of an emotional state but it can also be a result

of one of the ANS non-emotional functionalities [7].

2.4 Electrodermal Activity

EDA (also referred to as Galvanic Skin Response (GSR)), measures the electrical conductivity of the

skin. This measurement is correlated with the activity of the sweat glands in the skin. Although sweating

is usually a result of thermoregulation, the sweat glands are also controlled by the SNS, hence being

responsive to psychophysiological stimuli. For example, an increase in the activity of the SNS leads to

an increase in the activity of the sweat glands, which in turn increases the skin conductance.

During periods of arousal, the SNS is active leading to an increase in the sweat glands activity, which

can be noticed mainly on palmar and plantar sites, in axillary and genital regions, as well as on the

forehead. This increase in the sweat gland activity culminates with an increase of the EDA amplitude,

thus, one can say the EDA signal is correlated to the arousal level experienced [47]. The electrodes

should be placed in regions of the skin with a high density of sweat glands, e.g. palm/finger (Figure 2.4)

or feet [4].

There are two different methods of measuring EDA: without applying an external current (endoso-

matic method) or by applying a current (exosomatic method). In the endosomatic method, an electrode

is placed on an active site, such as the palm, and a second electrode is placed on an inactive site, such

as the forearm. Through this method, the Electrodermal Responses (EDRs) can be easily identified

although the waveform is more complex than in the other methods, i.e. the waves can be mono-, bi- or

triphasic, while in the exosomatic method these waves are always monophasic [4]. In the exosomatic

methods, a Direct Current (DC) or Alternating Current (AC) is applied to the skin. The measurement of
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Figure 2.4: Preferred palmar electrode placement (A-D) and recommended placement for the inactive electrode for
endosomatic approach [4].

EDA using direct current with Silver–Silver Chloride (Ag/AgCl) electrodes and an electrolyte of sodium

or potassium chloride is the most commonly used method.

This method consists in applying a small constant voltage on two electrodes placed on the palm’s

skin of the same hand (to avoid ECG artefacts). Given that the applied voltage is a known value,

the skin resistance can be determined based on the measured current using the Ohm’s law (a more

extensive review on the measurement of the EDA can be found in [47]). Usually, the EDA is measured in

micro Siemens (µS) [48]. Using the exosomatic method with direct current may lead to the polarization

of the electrodes, resulting in a behaviour similar to a rechargeable battery by the electrodes, with a

voltage opposing the applied one, and introducing a bias in the recordings of the skin conductance [48].

To circumvent this problem associated with the use of direct current, the exosomatic method using

alternated current can be applied. However, this method is not very common, since it requires more

elaborate instrumentation and it has a complicated comprehension of the acquired data (due to the

phase shift caused by the combined conductance and capacitance in the skin) [48].

The EDA can be decomposed into two main components: phasic and tonic. The latter one cor-

responds to a baseline signal with low bandwidth (f < 3Hz) and it expresses the Electrodermal Level

(EDL) (also known as Skin Conductance Level (SCL)) [7]. This is a slowly changing signal, which reflects

the overall baseline, not directly related to any stimulus [4]. The EDA signal also contains nonspecific

skin conductance responses, which are phasic peaks in the EDR signal, but they occur in the absence
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of external stimuli or artefacts (Non-Specific EDR).

Figure 2.5: Example EDL and EDR signals.

The manifestations of the ANS on the EDA signal are expressed by the phasic component, in order

words, the physiological changes caused by the SNS as a response to a stressful situation, for example,

are contained in the EDR component. These responses are represented by short-lasting changes in the

signal called EDR, or Skin Conductance Response (SCR) which can be elicited by distinct stimulus [48].

The peaks detected in the EDR are usually in response to a stimuli, thus they are called Event-Related

EDR. On the other hand, peaks with a similar shape but occurring in the absence of external stimuli

are called Non-Specific EDR. These responses have a relatively long latency period, between stimulus

and signal onset, ranging from 1 second (s) up to 5s; it is important to note that this measurement is

influenced by external factors such as the room temperature and recording site. The mean latency time

in a room with a temperature of 30ºC is 1.5 s [4].

In this work, we focus on the exosomatic EDR (with direct current, which as previously described is

the most commonly found in the literature). In Figure 2.6 it is possible to observe a prototypical EDR

waveform with a short rise time and longer recovery. Usually, the rise time is shorter than its recovery

time. The rise time has a range between 0.5 and 5 s, with a mean time of 2.184 s and standard deviation

of 0.643 s, the distribution being slightly positively skewed and platykurtic [49]. On the other hand, the

half recovery time has a mean value of 4.144 s with a standard deviation of 2.466 s, the distributions

being slightly positively skewed and leptokurtic [49]. In cases with multiple high arousal stimulus being
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presented in a short time period, several EDR events can become overlapped (Figure A.1).

The level of distortion depends on the proximity and amplitude of a preceding EDR. These levels

are labeled from ”type 1” (represented in Figure 2.6) to ”type 3”. In Figure A.1, it is possible to observe

”type 2” and ”type 3” of overlapping and three methods of calculating the EDR amplitude. In the ”type

2” overlapping, the first EDR does not reach the half recovery time, thus method A or B can be used

to measure the amplitude of the second EDR. In this scenario, method A estimates the amplitude of

this response by measuring the vertical distance from its peak to the extrapolated recovery line of the

first response. On the other hand, method B estimates the amplitude of this response by measuring the

vertical distance from its peak to its onset. In the ”type 3” overlapping, there is no recovery after the first

peak of the curve, but instead another ascent. In this scenario, method C considers a single EDR and

measures a single amplitude. Considering these approaches, method B is the most widely applied and

it has been shown to produce sufficiently accurate results in most cases [4].

Figure 2.6: Prototypical EDR waveform with the respective characteristic to be extracted from it. Adapted from [4].

Beyond the decomposition of the EDA, another method to extract further information is to extract

features. These metrics compactly characterise the signal and allow the comparison of the signal across

different subjects or time instants enhancing the information that can be extracted from the signal [7].

The features can be specific to a certain signal or general time series characteristics. The extracted

features can be grouped into the following classes: temporal, statistical and spectral. Some of the most

commonly extracted features are presented in Table 2.1. As stated above, one can also extract specific

metrics from the EDA. The list of commonly extracted features in the literature from the EDA signal are

shown in Table 2.2, although some features provide more information regarding the emotional state than

others, e.g. the mean value of the signal is correlated to the level of arousal. Feature extraction is critical

to achieve good outcomes, thus finding features of the physiological signals that correlate with emotional
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Table 2.1: Features commonly extracted from time-series signals grouped by their domain [7].

Domain Features

Temporal Maximum, minimum, centroid, median/mean absolute deviation/difference, zero crossing
rate, linear regression, range, absolute integral

Statistical Mean, median, Standard Deviation (STD), variance, interquartile range, root mean square,
skewness, kurtosis, histogram

Spectral Total energy, spectral centroid, spectral spread, spectral skewness, spectral kurtosis, spec-
tral slope, spectral decrease, spectral roll-on/off, spectral variation

Table 2.2: Features commonly extracted from EDA signals grouped by their domain [7].

Domain Features

Temporal
EDL degree of linearity, temporal features on EDR signal, number of EDR events, sum
of SCR startle magnitudes and response durations, area under the SCR events, temporal
features on SCR amplitudes, rise and 50%/60% recovery times

Statiscal Statistical features applied to: SCR signal, amplitudes, rise and 50%/60% recovery times
Spectral Spectral features applied to SCR signal, 10 spectral power bands in the 0.2-4Hz range

states of an individual is an arduous task.

2.5 Elicitation Material

Emotions are highly subjective and have great variability, hence obtaining data that corresponds to a

particular emotional state can be very challenging. To overcome this challenge, researchers rely on a

controlled environments (e.g. a lab), where emotions can be triggered with specific emotional stimuli

following well designed protocols. These emotional stimuli are pre-validated, in an attempt to reliably

induce the desired affective state, and different elicitation methods exist, namely: pictures, videos, Vir-

tual Reality videos, games, sound, words, recall, acting. Nevertheless, the state-of-the-art has been

progressing to less controlled real world scenarios [7].

Due to its low cost, and easy replicability, the use of pictures is one of the most common approaches,

with several sets of standardized images for the elicitation of attention and a wide range of emotional

experiences being proposed over the years. For example, the International Affective Picture System

(IAPS) [10, 44, 50] contains images rated in terms of valence, arousal and dominance. The Geneva

affective picture database (GAPED) [51] consists of 730 images, separated by positive, negative or

neutral content, and rated in terms of valence and arousal. These are just a few sets of standardized

images.

A second preference in the state-of-the-art in emotion elicitation, is to use videos. Emotion elicitation

based on films or short-duration audiovisual video clips have shown to be the most reliable material for

emotion elicitation [7]. Most studies use short movies (under 20 minutes) or small clips of films; this is

the case in the validated video databases, such as: LIRIS-ACCEDE [52], HUMAINE [53], and MAHNOB-
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HCI [54]. Only the database DEAP [55] has videos with more than 20 minutes, containing 40-minute

music videos self annotated by 32 participants in terms of Valence-Arousal, Like-Dislike familiarity and

Dominance.

However, in daily life, emotions are experienced based on random events or triggers, which can lead

to a variety of complex emotions that depend on the subject. So, eliciting emotion with calibrated data

does not accurately mimic the emotions commonly experienced in the real-world [56]. Furthermore, the

majority of the emotions experienced in the real-world are not felt in constrained environments, such as

the labs. Emotions are usually experienced in social contexts, where emotions are not only dependent

on the participant and the elicitation stimulus, but also on the environment in which the individual is

inserted. So, there is need to further study emotional dynamics in real-life condition using uncalibrated

and previously unseen elicitation materials, such as a movie [17,27].
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This chapter presents the data acquisition protocol used to evaluate collective physiological re-

sponses while watching a long-duration uncalibrated audiovisual content in a real-world setting. Sec-

tion 3.1 presents the reasoning which led to the evaluation of emotion in a group setting, namely the

impact of being in a group settings. Section 3.2 comprises an overview of the state of the art in the

scope emotional assessment in terms of the acquisition protocols used in previous works. Section 3.3

describes the data acquisiton devices, the annotation tool used and the data acquisition protocol.

3.1 Motivation

In real life scenarios, emotions are usually experienced in social contexts, where emotions are not

only dependent on the participant and the elicitation stimulus, but also on the environment in which

the individual is inserted and the implicit and explicit interactions that can occur between the group

members [17, 27]. However, most studies focus on the individual setting emotion analysis, and have

ignored the important dimension that is the group setting.

In a group environment, there are several subconscious processes that lead to changes in the emo-

tions experienced by the group members. Primitive emotional contagion is the main process used to

explain group emotions; in this process an individual mimics another person’s emotion unconsciously

and automatically [57]. For example, individuals in a crowd can develop similar emotions not due to indi-

viduals observing each other but because they unconsciously mimic each others’ emotions [58]. Other

subconscious processes are behavioral entertainment and synchrony of interaction, in which individuals

adjust their emotions in order to be coordinated and synchronized with the rest of the group; this occurs

through the observation of facial, postural, and behavioral expression [59].

Besides subconscious processes, there are also conscious processes within a group environment.

In these conscious processes, individuals acquire cues regarding each other’s emotions, and compare

them with their own to judge whether their emotions are appropriate to the current situation [58]. Addi-

tionally, emotions can also be shared through social interaction, e.g. a conversation regarding a certain

emotional state may lead to an individual relating to the circumstance, thus reliving the emotions ex-

pressed [58].

Group emotion have a great effect on group outcomes. Positive group emotions reduce conflict,

increase cooperation and performance, although it may also lead to the spread of unrealistic euphoria.

On the other hand, negative group emotions are associated with a decrease in creativity, reduce the

span of attention and cooperation [58]. This part of the work aims to investigate the impact of emotional

dynamics in a group setting, through the evaluation of collective physiological responses while watching

a long-duration uncalibrated audiovisual content in a real-world setting, based on EDA signals. The data

is used to create a database for collective emotion assessment containing annotated EDA signals in
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terms of Valence, Arousal and level of confidence in the annotation.

3.2 State-of-the-Art

In the work of Haag et. al [60], physiological signals are collected in a controlled environment (laboratory)

with the participants being alone in a room, while emotions are being elicited using a calibrated image

dataset. The work of Domı́ngues-Jiménez et. al [2] follows a similar approach, but in this case using a

calibrated video dataset.

In daily life, emotions are experienced based on random events or triggers, which can lead to a

variety of complex emotions that depend on the subject. In contrast, eliciting emotions with calibrated

data restricts the range of reactions from the participants. To overcome this constrain, one can use

uncalibrated and previously unseen elicitation materials, such as a movie. In the work of Lee et. al

[56], the authors use uncalibrated movies to elicit positive or negative emotions according to the movie

genre. The movie was displayed in an individual setting, while acquiring ECG and EDA signals from the

participant.

However, Humans are highly social beings that tend to live in collective structures. Hence, studies

that elicit emotions in an individual setting are ignoring an important component for the study of affect.

In [6], Wang et. al studies the influence of a commercial audio track on an audience of 15 subjects

through the evaluation of EDA data. Participants were in a controlled room watching, in turn, three

different sets of the same video with different audio tracks, while EDA data was being collected on the

fingers. Before and after each video, participants individually filled two questionnaires to assess their

engagement to the clip shown.

The work developed by Miranda-Correa et. al [27] studies the influence of individual versus group

settings. In this work, participants performed the experiment either in an individual or a group setting

(constituted of 4 subjects). The experiment consisted of watching a movie clip with 14 minutes (or

longer) and filling a self-assessment questionnaire based on the SAM, before and after the elicitation

clip. The clips were extracted from different movies and did not require any previous knowledge to be

understood. In order to maximize group interactions, groups were formed with people that already knew

each other beforehand, although the experimenters did not say if the participant could talk to each other

for the interactions to be spontaneous. The experiment was conducted in a recording room, and during

the visualisation of the clips physiological signals were collected, namely, EEG, ECG and EDA along

with frontal HD video of the participants.

In the studies described above emotions are elicited in a controlled environment, however, the ma-

jority of the emotions experienced in the real-world are not felt in such a constrained environment, thus

motivating the need to further study emotional dynamics in real-life conditions [61]. Ojha et. al [46]
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studies the arousal state of subjects in an individual uncontrolled real-world scenario consisting of a

walk through the streets of Zürich, using EDA data. Fleureau et. al [45] evaluates an audience arousal

response in a real-world scenario (a film festival), while watching a movie in a cinema room. To this

end, the EDA signal is recorded for every participant during the whole duration of the movie, although no

assessment method is applied to obtain the participants opinion regarding the movie. This study uses

an uncalibrated content, in a group setting and in a real-life context, effectively measuring the audience

arousal level solely based on the EDA signal and the movie highlights according the group opinion as a

whole.

3.3 Proposed Methodology

This section is divided into three subsections. The first subsection describes the characteristics of the

data acquisition device used to collect the participant’s EDA signal. The second subsection presents

the emotional annotation tool used to obtain a retrospective emotional self-annotations. Finally, the third

subsection describes the experiment setup and data acquisition protocol.

Wearable Device

The device chosen to acquire physiological data during the visualization of audiovisual elicitation con-

tents was the Xinhua Net FMCI device. The device was selected due to its capability to wirelessly

acquire EDA data from up to 20 devices simultaneously. The performance of this system was evaluated

in [43], showing the feasibility of signal acquisition with no significant data loss, in collective settings.

The FMCI device consists of a small wrist bracelet with two electrodes connected; two electrodes are at-

tached to the palm or finger area, making it a highly mobile data acquisition device. The device collects

EDA data through an embedded sensor designed to acquire EDA signals with a bandwidth between

0 and 5 Hz with a sampling frequency of 1 Hz, and uses a combination of low-power communication

and and has a battery that enables it to work for over 50 hours. The sensor consists of an operational

transconductance amplifier and a low-pass filter. The former is used to increase the amplitude of the

weak potential differences generated from the biological electric signals. Additionally a second-order

low-pass Butterworth filter (gain = 2, cut-off frequency = 5Hz) is applied [43].

Emotional Annotation

The volunteers’ emotional annotation was performed retrospectively using the EmotiphAI annotation tool

developed by Bota et al. [5]. The user interface for emotional self-reporting can be seen in Figure 3.1.

At the top of the interface (Figure 3.1 - A) it is possible to select which participant is currently performing
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their emotional self-report; to protect the privacy of the participants, these are anonymously identified by

their device ID. The segments to be annotated by the user are displayed below (Figure 3.1 - B). These

segments correspond to the time area where the subjects’ EDA signal responded with higher intensity.

Furthermore, since the annotations are being performed in specific time segments, each annotation has

the corresponding time span. On the left there is a visible video player (Figure 3.1 - C) for the users

to see the video clips which they are currently annotating. The goal is that, through the visualization of

the clip, the user can recall the emotional state experienced during the first visualisation of the content.

This emotional state should be annotated on the right (Figure 3.1 - D) using the digital SAM [3] Arousal

and Valence self-reporting scale. Below each dimension there are two uncertainty buttons (Figure 3.1

- E), for the user to rate how certain they were of their Arousal and Valence reports, respectively. The

uncertainty of the participant in the annotation of his emotional state may arise from a lack of motivation

or engagement in the study, not fully understanding the Arousal and Valence concepts, or even the clip

displayed encompassing complex emotional states. Lastly, at the bottom of the interface (Figure 3.1 - F)

there is an optional box for the user to introduce further comments. After all the fields have been filled

in, the next timestamp will be automatically selected for the user to annotate, changing the highlighted

box at the top and loading a new clip in the video player.

A

D

E

C

F

B

D

E

Figure 3.1: EmotiphAI self-reporting annotation interface [5].
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Emotion Elicitation and Data Acquisition Protocol

The participants involved in these acquisitions were volunteers, older than 18 years old, without any

known pathology. Participants were asked not to be under the effect of alcohol or medication before

and during the experiment. Participants showing any physical or psychological impairment needed

for the experiment, were not enrolled. The documents to be sign by the participants (e.g. informed

consent document) as well as the experimental procedure were authorized by the ethics committee of

the University under the process #1005890.

A selection of audiovisual elicitation content was performed based on the availability of the subjects

subscribed platforms (e.g. Netflix, HBO, HULU), national TV programme (RTP) and the content genre

(e.g. Comedy, Drama). The aim was to select novel long-duration content, with a duration longer than

40 minutes (µ=100.6 min, σ=32.6 min). The selected content consisted of recent uncalibrated movies

that premiered in the last 3 years, thus approaching current topics. Furthermore, these contents covered

7 different genres to elicit a broad range of emotions.

Each experiment was realized with a group of between 9 and 4 participants (µ=5.1, σ=1.6). An

assistant was present to ensure the protocol was properly followed; due to the COVID-19 pandemic, all

experiments were performed following the sanitary guidelines from the national health authority (Direção

Geral da Saúde - DGS). The trials were conducted in a familiar and comfortable environment for the

participants to eliminate any bias, such as the stress of being in a new environment, and simulate as

much as possible a real-world unconstrained scenario (Figure 3.2a).

Before the experiment, subjects were asked to sign an informed consent document, along with autho-

rization to use their pseudo-anonymized data. Each participant was only enrolled in the experiment after

agreeing to the terms in these documents. To ensure the data privacy of each participant, a pseudonym

was assigned and the data collected was disassociated from the participant’s private information (e.g.

name). Furthermore, the documents signed by the participant were kept in a room with restricted access

and the registered data maintained confidential, without the association of the participant identity, and

password protected.

A Raspberry Pi 4 Model B was used as a set-top media center to display the elicitation content,

run the EmotiphAI data acquisition and annotation software, and store the physiological data. This

media center was connected to a LCD monitor (SAMSUNG UE65TU7025 with 65” - 165 cm) to exhibit

the elicitation content. Furthermore, this device also receives the data sent in real-time by the EDA

acquisition devices, and stores it locally. For the data acquisition, each participant had one Xinhua

Net FMCI device connected to their wrist or forearm, this device has two EDA electrodes, which were

placed in the palm of the hand (according to Figure 3.2b) with Ag/AgCl electrodes. After the acquisition

system was set up and the sensors have been placed, the devices were turned on and a data quality

assessment was performed by the assistant, to see if every element was set up correctly. The Raspberry
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(a) (b)

Figure 3.2: Experimental conditions of the acquisition process. (a) - Layout of the sitting area in relation to the LCD
monitor. (b) - Device and electrode placement at the wrist and palm of the hand, respectively.

Pi embedded EmotiphAI software ensured the synchronization between the data acquisition and the

video, by starting the two simultaneously.

After, the viewing of the movie, participants were asked to fill their self-assessment annotations

regarding the content watched. The subjects’ emotional annotation was performed using EmotiphAI’s

annotation tool using their mobile phones or a PC provided by the research assistant.

Both the EDA signals and the emotional annotations are stored in the same HDF51 file in a hierar-

chical format. For each user a HDF5 dataset is created, containing all the information acquired from

this user i.e. the EDA signal and the user’s annotations. The data from each source is saved in a differ-

ent group, resulting in each dataset containing five groups (plus one optional group containing the user

annotations comments): EDA signal; Arousal annotations; Arousal uncertainty; Valence annotations;

Valence uncertainty.

1https://www.hdfgroup.org/solutions/hdf5/
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This chapter summarizes the emotional analysis performed on the collective data. Section 4.1

presents the reasoning which led to the evaluation of emotion in a group setting, namely the impact

of being in a group settings. Section 3.2 comprises an overview of the state of the art in the scope of

collective emotional assessment. Section 3.3 describes 2 different analysis: the first consists in eval-

uating the annotations given by the participants and the assessment of the similarities of synchronous

annotations across different participants. The second analysis suggests a new approach to identify time

regions where the participants and the audience reacted with higher intensity, based on EDA data and

unsupervised machine learning techniques. Section 4.4 presents the results achieved with each analy-

sis and Section 4.5 discusses such results in terms of the annotation performed by the participants and

the evaluation of the content based on the EDA data

4.1 Motivation

Emotion recognition is a skill that is inherent to almost all human beings, so it is often taken for granted,

although the same is not observed when replicated by a computer. In the filed of Affective computing,

emotion recognition is still a great challenge. Previous work on emotion recognition focuses mainly

on the analysis of emotion in an individual setting and in controlled environments, ignoring important

dimensions. Hence, to evaluate emotions experienced by the subjects in a group setting, it is necessary

to collect the data simultaneously from all participants.

Furthermore, the majority of studies applying machine learning techniques to perform emotion recog-

nition use supervised algorithms. However, supervised learning techniques require each sample to be

annotated with a ground-truth, in contrast to unsupervised learning (that does not require samples to be

labelled). The collection of ground-truth data is a difficult process, especially the accurate labelling of

emotional states, where attributing a label in a reasonable and scientifically-valid manner is even more

complicated due to the subjectiveness in the appraisal and expression of emotion states. Most studies

typically circumvent this issue by using short-duration (a few minutes) calibrated content to elicit specific

emotions (see Section 2.5). A question is put upon whether a few minutes validated clip is able to elicit

emotions similar to a real-life experience, when a longer content is appraised by the subject and a build

up to each emotional state is experienced.

In the literature, the application of unsupervised learning algorithms to perform emotion recognition

is considerably unexplored. Within the field of emotion recognition based on physiological signals, un-

supervised learning is based mostly on EEG data, although it is still in a smaller scale when compared

to the number of algorithms found for external expressions of emotions.

This part of the work seeks to analyze the emotional responses in a group setting when long-duration

uncalibrated elicitation content is used. Being in a group environment can have an effect on the emotions
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experienced at the time, as referred in Section 3.1, and the elements in a group are expected to react

in a similar manner with regards to the elicitation content being watched, so the present work aims to

analyze the similarities in simultaneous annotations across different participants, along with an analysis

of the correspondent EDA signals dynamics. Furthermore, this work also suggests a new approach

to identify time regions where the audience reacted with higher intensity on the EDA data based on

unsupervised learning techniques.

4.2 State-of-the-Art

As seen in Chapter 2, the EDA signal is strongly related to the emotional states experienced by the

subject, namely the Arousal dimension of emotions. Thus, studying this signal provides a bridge to un-

derstand human emotions. The authors in [62] performed a thorough review on innovations in the EDA

signal processing, namely in signal decomposition tools. Out of all the decomposition tools analysed,

the cvxEDA [63] stood out due to its low computational cost, good decomposition results and implemen-

tation in a Python environment. This algorithm describes the EDA as the sum of three components:

the phasic component, the tonic component and an additive white Gaussian noise component (which

incorporates the model predictions errors, measurement errors and artefacts). The algorithm is inspired

by the physiological characteristics of the EDA and explains this signal based on Bayesian statistics,

mathematical convex optimization, and sparsity. Furthermore, this method has also been widely used

in many applications [44, 62], it is robust to noise, and overcomes the issue of overlapping EDR events

(explained in Section 2.4), so it is considered to be a viable option for the analysis and decomposition of

the EDA signal.

Feature Extraction

In the literature, the number of metrics used to analyse the EDA is highly diverse, varying from study

to study [64, 65]. In [66] the author extracts 8 features, mainly temporal and statistical, from the EDA

signal (peak to rise time sum, peak amplitude sum, half-recovery sum, peak energy sum, rise rate

average, decay rate average, percentage decay, and number of peaks), coupled with data from other

physiological signals, achieving an accuracy of 89.23% in detecting the stress level of drivers when using

Layer Recurrent Neural Networks algorithms. Recently, Martinex et al. [40] proposed a new feature

which is the surface area comprising the difference between the EDA signal and its linear regression.

According to the authors, this feature has a low computational load while providing great physiological

significance. The value of this feature will be smaller if fewer EDR events take place, thus the higher

the value the more EDR events took place, highlighting significant ANS activation. Martinex et al. [40]

achieved an accuracy between 64.9 and 99.1% in detecting the stress level of participants when using
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different supervised machine learning algorithms.

Regarding the analysis of emotion based on EDA data, in the work developed by Li et al. [42],

the authors establish a temporal correspondence between a weighted mean of the EDA signal and a

continuous arousal annotation. This correspondence was achieved by simultaneously acquiring EDA

data and a continuous arousal annotation from 13 participants, throughout the duration of the elicitation

content (with close to 2 hours duration). These results validate the correspondence between the EDA

signal and the arousal dimension of emotions.

Fleureau et al. [45] evaluated the audience reaction during a regular cinema show solely based

on EDA data collected simultaneously across all participant in the audience. For this goal, first the

Individual Affective Profile was calculated by pre-processing the EDA signal, truncating its derivative

to positive values to highlight relevant phasic changes and normalizing the resulting signal. However,

this measurement only reflects the individual reaction, leading to an evaluation of the audience reaction

based on the Mean Affective Profile (MAP) computed by averaging the Individual Affective Profiles of

every audience member. The resulting MAP proved to be an effective method of evaluating the audience

arousal reaction to an elicitation content.

In terms of the application of unsupervised learning techniques in emotion recognition, the major use

of such methods are applied using external demonstration of emotion such as speech and facial expres-

sions. These are the cases of the works developed by Eskimez et al. [67] and Huelle et al. [68], which

use speech and facial queues, respectively. Regarding the use of other physiological signals, Lakhan et

al. [41] applies clustering algorithms (a type of unsupervised learning technique) to EEG signals. The

EEG data was acquired while the participants watched different movie trailers, and the clustering algo-

rithms were applied to features extracted from this signal, with the goal of grouping the movie trailers

which elicit similar emotional reactions. The algorithms applied were two standard clustering methods,

namely K-means and Gaussian Mixture Model, achieving accuracy scores between 0.63 and 0.70 when

predicting whether the elicited signals were associated with a high or low level of valence and arousal.

In a similar approach, Zhang et al. [69] use the K-means algorithm to group similar individual reactions

to different sound stimuli based on EMG and HR data. The results obtained were able to successfully

group the emotional states into groups of high and low valence when compared to the emotional an-

notations given by the participants, confirming K-means as a reliable approach to analyse emotional

reactions to different stimuli.

For this part of the work, we analysed the data according to two different methodologies. The first

approach consisted in using the participants’ self-reported annotations; this has three objectives: 1)

Evaluate the annotations throughout the content, in terms of number and values, to identify potential

“hotspots” of the content; 2) Evaluate the similarities in temporally related annotations in terms of EDA

events and annotation values; and 3) Establish correspondence between these synchronous annota-
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tions and the elicitation which triggered them. The second approach seeks to expand the state-of-the-

art, by using EDA data to determine the time regions where the audience reacted with higher intensity,

based on clustering algorithms applied to features extracted from this signal, and grouping the time

region where the audience reacted in a similar manner.

Clustering Algorithms

Clustering is a task that consists in grouping a set of objects so that each group contains objects that

are more similar to each other than to those in other groups. In the literature there are several different

clustering algorithms, which can differ significantly in their definition of what constitutes a cluster and

how to efficiently divide them, thus they often produce different outputs for the same data [70]. This

work focuses on the application of hierarchical clustering, namely agglomerative linkage hierarchical

algorithms and K-means algorithms.

Hierarchical algorithms can be divided into two different types, agglomerative and divisive [71]. Ag-

glomerative clustering consists of a bottom-up approach, in which a cluster is created for each individual

sample and, in iterated steps, clusters separated by the shortest distance are combined. Divisive clus-

tering is the opposite; all observations start in the same group and, with each step, the groups are split

into subsets of clusters [72]. Agglomerative algorithms can be further divided into two groups. The first

group consists in the linkage methods, in which no additional information is used besides the input data.

On the other hand, in the second group of algorithms, it is necessary to specify the center point of each

cluster - centroid; samples are grouped in clusters according to the proximity to the closest centroid. [72].

Regarding the stopping criteria, these algorithms stop merging clusters when a predefined number of

clusters is reached. The number of clusters can be determined using different methods, some of which

are: manually and automatically determined using (e.g.) the life-time criteria [70].

In the current work, four different hierarchical linkage methods are applied: single linkage, complete

linkage, average linkage and ward linkage. In the single linkage method the distance between two

clusters is determined by the minimum distance between all observations of the two sets [72]. An

alternative approach is the complete linkage, in which the distance between two clusters is determined

by the maximum distance between all observations of the two sets [72]. Average linkage uses the mean

distance between each clusters based on the mean distances of each observation of the two sets [70].

Lastly, the ward linkage minimizes the variance of the clusters being merged [70,72].

The K-means algorithm clusters data into groups with equal variance by minimizing the inertia of

each cluster or the within-cluster sum-of-squares. In this algorithm the number of clusters, X, has to be

specified since it initiates by determining X centroids, one per cluster (these centroids can be updates

throughout the clustering process) [73].
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4.3 Proposed Methodology

This section is subdivided into 3 distinct subsections. The first subsection describes the pre-processing

steps taken regarding the EDA signal, namely, the filters applied, signal decomposition and fiducial

points detection. The second subsection presents the methodology used in evaluating the annotations

given by the participants. Lastly, the third subsection suggests a new approach to identify time regions

where the participants and the audience reacted with higher intensity.

Signal Pre-processing

Data processing was performed on a Python 3 environment, with the support of the BioSPPy(version

2) toolbox [19], a publicly available set of signal processing tools to analyse biosignals. The first step in

the pre-processing of the EDA was outlier removal and manual selection of which signals/participants

to use. A function was developed to detected and remove the outliers of an EDA signal. This function

is based on two criteria: the amplitude difference with the mean of the signal and the derivative of the

signal. If a signal point has a large amplitude difference in relation to the mean of the signal and a large

derivative, it is considered to be an outlier and it is removed. To maintain the signal characteristics after

the outliers are removed, the signal is interpolated using the original sampling frequency with a cubic

spline interpolation (to replace the eliminated data points)1. The function also provides a confidence

level, which indicates the quality of the signal, i.e., if the signal has too many outliers the confidence

level is lower indicating low quality. The exclusion criteria for the manual selection was based on the

overall quality of the signals, that is, saturated signals, interruptions amidst the acquisition, and signals

with a constant amplitude were removed. Figure 4.1 shows two examples of excluded signals, where

it is possible to see that the data contains a great number of outliers, possibly from disconnections

mid-acquisition.

The EDA signal was interpolated to 10 Hz using a cubic spline interpolation. Afterwards, the signal

was filtered with a 4th order low pass Butterworth filter with a 1 Hz cutoff frequency. Following the filter,

the signal was smoothed using a 10 point moving average following the approach described in [74].

After these procedures, the signals were normalized per subject so that its range is between zero and

one 2.

As seen in Section 2.4, the EDA signal can be decomposed into 2 different components: the phasic

component EDR, and tonic component EDL. So, to decompose the EDA into these components the

cvxEDA algorithm was applied. In Figure 4.2a it is possible to see the decomposition of the EDA signal

into its components. From this image it is possible to see that the EDA signal corresponds to the sum

of its two components, EDR and EDL. Moreover, as discussed in Section 2.4, the EDL component is

1This was achieved using the scikit-learn toolbox which is publicly available
2minmax scale function of the scikit-learn tool
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Figure 4.1: Example of two EDA signals excluded from the analysis.

(a) (b) (c)

Figure 4.2: (a) - Example of the EDA data decomposition into EDR and EDL components using the cvxEDA algo-
rithm. (b & c) - Example of the detected fiducial points for the EDL, (b), and for the EDR, (c).

characterized for being a slowly changing signal, while the EDR is distinguished for representing short-

lasting changes which are usually a response to a stimuli. These characteristics of the EDA components

are observed in Figure 4.2a, where the EDL, in green, represents a slower varying signal with the

baseline of the EDA, while the EDR contains the rapid changes of the EDA associated responses to

different stimulus.

Finally, the identification of the fiducial points was achieved based on the method proposed in [75],

which has the advantage of not requiring any type of threshold. The algorithm returns the onset, peak

and end of each event (the end point corresponds to the 63% recovery time, or in cases this point is not

reached before the next event it is the same as the next event onset point). The detected fiducial points

for the EDL, are represented in Figure 4.2b, and the EDR, are represented in Figure 4.2c. It can be

seen that the EDR signal has a greater number and smaller events than the EDL.
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Analysis of the Synchrony between Annotations

A first analysis was performed of the self-reporting performed by the volunteers upon watching a movie.

Namely, the potential synchrony between time regions in which each participant performed an annota-

tion, throughout the duration of the movie. The total number of annotations across all the participants

throughout the duration of the movie was obtained. The total number of annotations was achieved by

summing the number of annotations performed by different participants in 1-second windows. Figure 4.3

gives an example on how these metrics were achieved. The red and blue lines represent the number

of annotations throughout the duration of the movie, during the first 2 seconds only one annotation from

Participant 1 is available. During the third second, annotations from Participants 1 and 2 are available,

thus accounting for a total of 2 annotations for this time instant. Lastly, for the remaining of the duration

(seconds four and five) only the annotation from Participant 2 was available. The same process was fol-

lowed throughout the duration of the movie to determine the number of participants annotating in each

time frame.

Afterwards, the annotations were evaluated in qualitative terms, thus a histogram was plotted with

the density of each annotation value for the Valence and Arousal dimensions. Each histogram had 5

columns, one per each annotation value from 1 to 5, with the total number of annotations performed with

those values; e.g. if there were 5 annotations with a level 1 Arousal, column 1 in the Arousal histogram

would have an amplitude of 5. The annotations were also evaluated throughout the movie, this was

achieved by plotting the mean value of each dimension (Valence and Arousal) in each 1 second time

window.

A further step was to analyse simultaneous annotations, which consist in 2 or more annotations which

overlap time wise. Simultaneous annotations are illustrated in Figure 4.3; the two annotations displayed

overlap during one second. Although the annotations from Participant 1 and 2 represented in light blue

and green, respectively, do not start and end at the same time, there is a period in which they overlap, so,

in this analysis they are considered simultaneous. Afterwards, the EDA data was concatenated for the

entire duration of the time window considered synchronous. In the example demonstrated in Figure 4.3

EDA data from Participants 1 and 2 would be joined from the start of the annotation of Participant

1 until the end of the annotation of Participant 2. The EDA signal from the remaining participants

(those who did not annotate in that time region) was also concatenated into a different group, for the

entire duration of the time window considered synchronous. Furthermore, the mean EDA signal was

calculated, along with the STD for simultaneous annotations periods. Likewise, the procedure was

implemented for the participants with no annotations during the timestamp. The movie clip for each

simultaneous time period was extracted in order to establish correspondence between the simultaneous

annotations and the possible elicitation stimulus. With the goal of comparing different simultaneous

annotations, the annotations values, along with the number of EDR events and the Pearson Correlation
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Coefficient (PCC) between the EDA signals of each participant involved in the simultaneous annotations

were acquired.

Figure 4.3: Example of the number of annotation in each time instant and illustration of a simultaneous annotation
across two participants

Lastly, the movie clips during the time periods where no annotation was performed by any participant

were extracted, to evaluate the hypothesis if these regions correspond to uneventful parts of the movie.

Collective Intelligence Analysis

This analysis focuses on determining the time regions where the audience reacted with higher intensity.

To this end, the first step is to extract representative features from the EDA signal. A wide range of fea-

tures are observed in the literature [7], from which 13 were selected based on the information provided

by each feature for emotion recognition. The features extracted were: Number of EDR onsets; Number

of EDL onsets; Area under EDR events; Sum of the startle magnitudes; Sum of EDR event amplitudes;

Sum of EDL event amplitudes; Sum of the response duration; Sum of the onset-peak times; Mean EDR;

STD EDR; Dynamic range; Mean of the EDA derivative; Surface area between the EDA and its linear

regression. These features were selected based on a trade-off between the number of features and the

information provided by each individual feature.

These features were extracted from each participant’s EDA signal and a group EDA, thus 2 different

analysis were perform, a group analysis to see where the audience as a whole reacted, and an individual

analysis to see where each participant reacted. The group EDA signal was calculated by determining

the mean EDA across all participants using a moving window with a length of 3 seconds and an overlap

of 2 seconds. Note that the participant’s EDA signals used to calculate the group EDA signal were

previously normalized across all participants. The resulting group EDA signal has a 1 second resolution,

which represented the mean EDA signal of the group. For feature extraction the signals were divided

into windows, in the literature, it was observed that windows should be between 10 to 300s [40]. In

the current work, a window size of 20s with an overlap of 5s was used. Given that the average movie
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scene duration has between 1 and 3 minutes, a window smaller than this would be too granular and may

not contain sufficient information for emotion recognition, while a longer window could encompass very

different reactions, compromising the results. For each window, the aforementioned 13 features were

extracted. The feature vectors were given as input for clustering algorithms. The clustering algorithms

were applied to group the periods of the movie in which the participant reacted similarly, or in the case of

the group EDA features, the periods of the movie where the audience reacted similarly. The number of

clusters in the hierarchical clustering was determined using the life-time criteria, while for the K-means

several number of clusters were tested as input to the algorithm. In particular, the number of clusters

was increased from 2 to 8 until there was a some distinction in the movie scenes in each clusters.

From the resulting clusters, the corresponding movie clips were extracted to analyse the scenes which

triggered such reactions. This analysis consisted in counting the number of clips in each cluster, their

total duration along with a visualization of the clips to see if there were any similarities between them,

and check if there was an emotional context behind such scenes. Assuming the premise that each

emotional scene triggers an emotional response and that neutral scenes do not trigger any emotional

response. This would mean that, ideally, every scene in clusters that only contain strong or emotional

clips, triggered an emotional reaction, and all the emotional reactions elicited by the clips in that cluster

were similar, thus being in the same cluster. Note that this method is correlated with the intensity of

the users’ emotional reaction (Arousal), and less correlated to how positive or negative an emotion is

(Valence). The current work relies on the EDA, which is strongly related to the Arousal dimension.

In a third approach, the MAP was determined using the methods described in the work of Fleureau

et al. [45]. The MAP is a validated methodology in the literature that reflects the arousal variations

of a global audience during a movie. This measurement was used as a ground truth to evaluate the

performance of the clustering methods. To derive this value, the first step, after preprocessing the EDA

data, is to truncate its derivative to positive values. Afterwards, the mean of the truncated derivative

is calculated in each 20 second window (with a 5 second overlap), and the signal is normalized (area

under the curve equal to one). The resulting signal for each individual is titled ”Individual Affective

Profile”. Finally, the MAP is calculated by averaging the individual affective profiles of every participant.

For further details in this process, we refer the reader to [45].

4.4 Results

This section is subdivided into 3 distinct subsections. The first subsection describes the dataset used.

The second subsection presents the results achieved in the first analysis, i.e. evaluation of the the

annotations given by the participants. Lastly, the third subsection displays the the results achieved in

the second analysis, i.e. a approach to identify time regions where the participants and the audience
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reacted with higher intensity.

Data characteristics

The current work focuses on the analysis of the data collected using as elicitation content the movie

”Spider-Man: Far From Home” directed by Jon Watts and written by Chris McKenna, Erik Sommers

and Stan Lee. Due to the pandemic situation in which this work was developed it was hard to gather

volunteers for the experiment leading to several delays in the acquisition process, thus only one movie

was analysed. The movie at hand had a total duration of 1 hour and 55 minutes (6900 seconds), and it is

classified on IMDB as an Action, Adventure and Sci-Fi film3. The movie tells a story about Spider-Man,

Peter, during his school vacation in Europe, when a new villain appears disguised as a superhero to

fight the elemental beasts that emerged in some of the European capitals. Data was acquired from 7

volunteers, from whom 2 where male; the average age of the participants was 20 years old, with a STD

of 0.7.

Participants 0 and 5 were excluded from the analysis, due to poor EDA signal quality, as per the

criteria defined in Section 4.3. Lastly, on account of the low number of participants, a specific colour was

attributed to each one, thus all plots with the same colour correspond to the same participant, from now

on. This colour code can be seen in Figure 4.4

Figure 4.4: Participant’s colour code

Analysis of the Synchrony between Annotations

In Figure 4.5a it is possible to observe the annotation performed by each participant throughout the

duration of the movie. As expected, not all participants performed the same number of annotations,

with Participant 2 only having annotated in a small period, while the annotations from Participant 1

are more spread throughout the movie. On the other hand, Figure 4.5b displays the total number of

annotations performed by all participants throughout the movie. As it can be seen, the number of

annotations fluctuates a lot with time, existing many and long periods with no annotations, and few

and short periods having up to 60% of the audience annotating. The total number of annotations was

61, corresponding to a total of 5375 annotated seconds, and 2895 seconds (42.0%) of film without any

3https://www.imdb.com/title/tt6320628/
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(a) Time regions in which each participant annotated. (b) Total number of annotations throughout the movie duration.

Figure 4.5: Temporal distribution of the annotations.

annotation. Furthermore, out of the 61 annotations, 39.3% (or 24 annotations) corresponded to a neutral

state of Valence and Arousal, with both dimensions having a value of 3.

In Figure 4.6 it is possible to see a qualitative representation of the annotations performed by the

audience. Figures 4.6a and 4.6b display a density histogram with the total number of annotations per

value, for the Arousal and Valence dimensions, respectively. From these figures, it is possible to observe

that most events were annotated with a 3 (especially in the arousal dimension), on a scale from 1 to 5,

with a slight tendency for higher values. These annotations mostly represent neutral emotional states,

with slight variation throughout the whole duration of the movie.

Figure 4.7 is an example of one of the simultaneous annotations; this particular one occurred across

Participants 1, 2 and 4. This simultaneous annotation was chosen to be represented because it occurs

during the longest peak in Figure 4.5b (this peak is the second maximum in 1000-2000 second time

range), so it should correspond to a higher intensity emotional part of the movie, where the audience was

more in tune. The annotation pair Valence-Arousal given by each participant during this period were:

(3,3); (3,1) and (3,4), respectively. With regards to the scene itself, it displays a fight scene between

Spider-Man and a water monster in the city of Venice, when a new superhero, Mysterio, appears for the

first time. In Figure 4.7a is possible to see the individual EDA signals of the 3 participants who annotated

in this time region. Although these annotations were considered to be simultaneous, they may not start

and end at the same time, so the vertical lines present the beginning and end of each annotation, i.e. the

first discontinuous blue vertical line represents the beginning of the event annotated by the Participant

1, and the second discontinuous blue vertical line represents the end of this event. Figure 4.7b displays

the individual EDA signals of the participant who did not annotate. Lastly, Figure 4.7c displays the

mean EDA in blue and the mean EDA ± STD in shaded color for the participants who annotated, and
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(a) (b)

Figure 4.6: Density histograms with the total number of annotations per value for the Arousal (a) and Valence (b)
dimensions.

Figure 4.7d represents the same but for the remaining participants.

To establish a comparison between several simultaneous annotations, Table 4.1 displays 8 represen-

tative simultaneous annotations, out of the 20 total simultaneous annotations, along with the annotation

values of each participant involved, the number of EDR events during that time period and the PCC be-

tween the EDA signal of each participants. In addition to this, the table also contains a brief description

of the movie scenes associated with each simultaneous annotation represented.

Table 4.1: Comparison of the annotations and the EDA signals of the participants involved in each simultaneous
annotations, along with a description of the correspondent movie scene

Participants Annotations (V,A) # EDR events PCC Scene description
1 4 6 1 4 6 1-4 1-6 4-61,4,6 2,2 4,4 4,3 16 16 15 0,0424 0,6203 0,4707

Spider man is stressed with complicated
questions and funny scene with may

1 2 4 1 2 4 1-2 1-4 2-41,2,4 3,3 3,1 3,4 51 94 18 0,2027 0,4841 0,3826 Intense Fight Scene

1 2 6 1 2 6 1-2 1-6 2-61,2,6 3,3 3,3 4,2 49 15 29 0,2679 0,0529 0,1913
Funny scenes and jokes /

talk between Spider man and Fury
1 3 1 3 1-31,3 3,3 4,5 42 22 0,154 Peter almost mistakenly kills a friend

1 3 6 1 3 6 1-3 1-6 3-61,3,6 3,3 5,4 4,3 57 34 40 0,6982 0,6492 0,8703 Peter is scared for his friends safety

1 3 6 1 3 6 1-3 1-6 3-61,3,6 3,3 3,3 4,3 34 23 21 0,5624 0,71 0,2504
MJ finds out about Peter

being Spider-Man
1 4 1 4 1-41,4 3,3 3,3 14 4 0,6265 Fight scene with lava monster

2 4 6 2 4 6 2-4 2-6 4-62,4,6 3,1 3,4 4,3 56 26 35 0,3578 0,1482 0,468
Intense Fight Scene
with water monster
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(a) (b)

(c) (d)

Figure 4.7: Representation of simultaneous annotations across Participants 1, 2 and 4. (a) - EDA signals of each
participant that annotated in this time period, where the vertical lines represent the beginning and end
of the annotations of each participant; (b) - EDA signals of each participant that did not annotate in this
time period; (c & d) - Mean EDA signal in blue and the mean EDA ± STD in shaded color, for those
who annotated (c) and those who did not annotate (d).
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Collective Intelligence Analysis

In Figure 4.8 it is possible to see the MAP, where each point represents the mean arousal of the audience

at that instant. The mean MAP throughout the whole duration was 9.64×10−5 with a STD of 1.33×10−4.

This image also contains a representation of the most relevant scenes of the movie, the shaded light

blue areas represent the periods in which such scenes occur identified from (a) to (k). The description

of the scenes associated with each area is: (a) - Spider-Man in an awkward situation, funny scene; (b)

- Spider-Man gets stressed out with an interview, emotional scene; (c) - Peter and his friends are on

a plane telling several jokes, funny scene; (d) - Spider-Man and Mysterio fight a water monster, action

scene; (e) - Aunt May has a boyfriend, funny scene; (f) - Spider-Man and Mysterio talk about the past,

emotional scene; (g) - Spider-Man and Mysterio fight a lava monster, action scene; (h) - Revelation that

Mysterio is a villain, emotional scene; (i) - MJ finds out that Peter is Spider-Man, emotional scene; (j)

- Mysterio tricks Spider-Man and attacks him, action scene and (k) - Final fight scene between Spider-

Man and Mysterio, action/emotional scene. These scenes and their description were obtained based on

the visualization of the movie by one annotator. The most relevant scenes of the movie are consistently

located around the peaks of the MAP.

Figure 4.8: MAP calculated throughout the duration of the movie, along with a description and location of the most
relevant scenes of the movie [6].

Figure 4.9 displays the group EDA signal of the audience, achieved by averaging the EDA across

all participants. It can be seen that the signal shows prominent variations alternating between a period

of high and low amplitude throughout the movie. Table 4.2 describes the results achieved with each

clustering algorithm in terms of the number of clusters, number of clips, total duration of the clips in each

group, mean MAP and STD MAP. These clusters were achieved based on features extracted from the
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Figure 4.9: Group EDA signal.

Table 4.2: Table with the characteristics of the group video clips achieved using different clustering algorithms with
the group EDA signal.

Clustering Algorithm Cluster Counts Length (s) Mean MAP (E-04) STD MAP (E-04)

Hierarchical Average Linkage
0 22 6327 0,90 1,88
1 7 327 4,84 2,27
2 15 315 1,73 1,27

Hierarchical Single Linkage 0 16 6576 1,57 1,26
1 15 315 1,87 2,00

Hierarchical Complete Linkage 0 9 6414 0,95 1,86
1 8 393 4,40 2,41

Hierarchical Ward Linkage
0 84 4614 1,25 1,16
1 22 1182 2,38 2,09
2 79 2019 1,03 1,75

K-Means

0 14 324 1,41 1,93
1 74 2364 1,96 2,09
2 15 315 0,62 0,76
3 36 801 1,12 0,75
4 26 891 1,21 1,19
5 54 2559 3,37 2,05
6 33 753 1,40 1,51
7 5 240 2,63 2,58

group EDA signal, thus the resulting clusters should reflect the periods where the audience had a similar

reaction. The characteristics of the clusters achieved using the features extracted from each individual

vary a lot from participant to participant, thus it can be difficult to extract conclusive results from such

analysis.

To evaluate the resulting clusters from the group EDA, Figure 4.10a displays a plot of the clusters in a

two dimensional space achieved using a Principal Component Analysis (PCA) on the original 13 features

extracted from the EDA data. This image displays the results achieved with the hierarchical clustering

with average linkage and the hierarchical clustering with ward linkage, since these were considered to

be the best and worst results obtained, respectively.

Lastly, in Figure 4.11a it is possible to see the MAP, in blue, and the time distribution of clusters 1

and 2 in the teal and yellow vertical lines, respectively (the areas which do not have any teal or yellow
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(a) (b)

Figure 4.10: Plot of the clusters obtained with different clustering methods using the group EDA signal, in a feature
corresponding to the 2 eigenvectors obtained by a PCA of the 13 dimension feature space. (a) -
Hierarchical clustering with average linkage and (b) - Hierarchical clustering with ward linkage.

vertical lines correspond to the time distribution of cluster 0, which is the longest one). In each sub-

figure a different clustering algorithm was applied; the algorithms used were the hierarchical clustering

with average linkage Figure 4.11a and the hierarchical clustering with ward linkage Figure 4.11b, which

correspond to the best and worst results obtained, respectively. The cluster data represents the time

frames that were classified into each cluster, thus a single blue point represents a 20 second time window

of the movie, which was grouped according to the audience reaction into that designated cluster.

4.5 Discussion

This section is subdivided into 2 distinct subsections, one per each analysis performed. The first sub-

section evaluates the annotations given by the participants and the second subsection evaluates the

performance of the new approach suggested.

Analysis of the Synchrony between Annotations

This analysis focuses on the annotations performed by each participant regarding the Spider-Man movie,

however, each person is different, thus the level of engagement of each participant and liking of the

movie and/or the annotation task was different. This can be seen with Figure 4.5a in the olive color; the

number and total duration of the annotations performed by Participant 2 was significantly smaller than

the remaining participants, with Participant 4 (in magenta) also having a considerably smaller number

and duration of annotation than Participants 1, 3 and 6. The reduced number of annotations by some

participants can be a result of a lack of engagement in the annotation task, this phase can be quite

monotonous since it requires a replay of several clips and their emotional annotation and, since the

participants of this study were volunteers they could leave without annotating all the suggested clips.
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(a)

(b)

Figure 4.11: MAP, in blue, and the time distribution of the clusters obtained with different clustering methods using
the group EDA signal, namely, (a) - Hierarchical clustering with average linkage and (b) - Hierarchical
clustering with ward linkage.
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Regarding the number of annotations performed throughout the whole duration of the movie (Fig-

ure 4.5b), there were parts of the movie without any annotation, which can be expected since the partic-

ipants were only performing annotations of the most relevant parts of the content. In terms of the period

in which there were annotations, the number of annotators for a given timestamp varies considerably,

since participants react differently to the same elicitation. As such, a clip that triggers an emotional

reaction in one participant may not trigger an emotional reaction in another participant. Even when clips

trigger an emotional reaction across several participants there could be a delay between emotional re-

sponses. Furthermore, it is to be expected that the periods in which the number of annotators is higher

correspond to parts of the film with higher emotional content, since they triggered an emotional reaction

in a greater percentage of the audience.

In terms of the values of the annotations, 39.3% corresponded to neutral states of Valence and

Arousal and, as it is possible to see in Figure 4.6a and Figure 4.6b, the main annotation value in these

dimensions was a 3, which is a neutral emotional state. These values were not expected since the

movie consisted of a high-pass superhero movie, with several fight scenes, along with some emotional

and comical parts. One would expect that the annotations of the relevant parts of the film were mainly

positive. Predominantly in the Arousal dimension, 65.6% of the annotations values were 3, although,

since this dimension measures the intensity of emotions, in an action movie such as the Spider-Man,

with very intense fight scenes, plot twists and comical scenes it was expected that the emotions elicited

would be more intense, as the film suggests.

These annotations suggest that a simple, unmeaningful conversation between two characters would

elicit an emotion as intense as a fight scene where Spider-Man almost dies, or a comical scene when

Peter gets caught by a friend in an awkward situation. The predominant Valence annotation value

was also a 3, though in this case, it is clearly seen that these annotations tend to higher values, which

describe a positive emotion as expected in these movies4. Nevertheless, in both dimensions, the number

of annotations with values of 1 and 2 (extreme values) were very low (as expected), since these describe

negative emotions, such as angry or scared, and inactive emotions, such as boredom or sadness, which

are emotions that these kinds of movies do not aim to elicit in their audiences.

The simultaneous annotation, performed by Participants 1, 2 and 4, displayed in Figure 4.7, is a

representative example of the simultaneous annotations, since the signal trends that can be seen in this

example are also observed in most of simultaneous acquisitions data. From Figure 4.7a it is possible to

observe that the EDA signals of different volunteers share very few similarities, however, the mean EDA

signal displayed in Figure 4.7c shows a tendency to increase in amplitude. Similarly, in Figure 4.7b it

is possible to see that the EDA signals do not share a lot of similarities, although the mean EDA signal

(Figure 4.7b) displays a downwards tendency in amplitude. As mentioned above, these EDA trends

4In contrast to a horror movie where it should be expected that the emotion elicited would be mainly negative
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are observed across the majority of the simultaneous annotations. In terms of the elicitation clip, this

period corresponded to an intense fight scene between Spider-Man and a water monster, when the new

character, Mysterio, first appears to fight side by side with Spider-Man. However, the Arousal annotations

given by these 3 participants were all neutral, thus not corresponding to the intensity possibly projected

by the director of the scene at hand. The Valence annotations ranged from 1 to 4, thus describing a

broad range of elicited emotions from very negative to positive for the same video clip.

Regarding the global evaluation of the simultaneous annotations, in Table 4.1 it is possible to see that

the PCCs (ranged between -1 and 1) are all close to 0, suggesting that the EDA signals in simultaneous

annotations have small correlation between them. In fact, the mean PCC between EDA signals of

simultaneous annotations is 0.45 with a STD of 0.24, which implies a low average correlation in these

signals. Furthermore, the number EDR events detected in these periods can be quite similar in some

cases. As observed in the first line of the Table 4.1 with Participants 1, 4 and 6, showing between 15

and 16 events, although the results are not consistent across all simultaneous annotations, with some

cases having a very different number of events being detected (e.g. in the third line of Table 4.1 with

Participants 1, 2 and 6). Therefore, it is possible to conclude that the number of EDR events does not

present a reliable correlation between the EDA data responses in simultaneous annotations

In conclusion, the EDA signals in simultaneous annotations display a tendency to increase in am-

plitude over the period of the annotations, while for the remaining participants, which did not annotated

in the same period, the same was not observed, displaying a decreasing trend in the EDA signal. Fur-

thermore, the signals during simultaneous annotations display few similarities, as observed by the PCC

obtained across the participant who annotated in the same segment. Regarding the individuals’ self-

reports, the obtained values do not follow the expected by a review performed by an expert annotator,

thus revealing a lack of comprehension of the annotations scales by the participants, a lack of engage-

ment towards the content and/or the annotation task, leading them to perform the annotations carelessly,

with minimal attention. The expert annotator consisted in a person with a background in emotional anal-

ysis and a vast knowledge of the Valence and Arousal scales. These difficulties in assessment methods

have already been described in [45], since these methods can be strongly biased by the level of attention

of the participant, by subjective factors in the perception of the scenes or their annotation. Furthermore,

they can also be considered to be intrusive, thus leading the participants to be reticent in performing

a genuine self-assessment. A possibility to overcome the annotation tools limitations is to perform an

emotional analysis solely based on the acquired physiological signals, in this case the EDA, and the

movie content.
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Collective Intelligence Analysis

Based on the methodology developed by Fleureau et al. [45] it was possible to determine the MAP of

the audience for the movie at hand. Indeed, high correspondence is observed between the identified

scenes by the annotator and the peaks of the MAP. Hence, verifying the correlation between higher

arousal states given by the EDA data and stronger emotional scenes of the movie, i.e. intense scenes

with strong emotions elicit high arousal emotional states in the audience.

Regarding the application of different clustering methods with features extracted from the group

EDA signal, Table 4.2 presents a characterization of the resulting clusters. Since these results were

obtained by extracting features from the group EDA signal, they represent the overall audience emotional

response to the movie. Based on the analysis of the movie clips in each cluster, clusters 1 and 2 of the

hierarchical average linkage, cluster 1 of the hierarchical single linkage and cluster 1 of the hierarchical

complete linkage are all composed exclusively of intense movie clips that portray fight scenes, comical

clips and emotional parts of the film, so these clusters successfully group the parts of the movie where

the audience had a more intense emotional reaction (with higher arousal). It was observed that these

clusters have the lowest duration (Length in Table 4.2) and contain the most relevant scenes, very

similar to each other in the elicitation emotional content. For the remaining clusters (with greater length),

although they may also contain scenes that can be labelled as emotional, they mainly contain very long-

lasting clips with ”dead zones”, i.e. filling parts of the movie where the history is developing without

eliciting any relevant emotion.

A further approach to verify the clusters containing ”dead zones” (besides the Length) is to identify

the cluster with the initial instant of the movie, i.e. the first few seconds of the movie that displays

the production companies. These instants are considered ”dead zones” and should be included in the

clusters with low emotional-intensity response. Regarding the clusters obtained with the hierarchical

ward linkage method, there was no clear distinction in the clips contained in each cluster, i.e. all clusters

seemed to contain both intense emotional clips as well as ”dead zones” (even though cluster 1 appeared

to contain less ”dead zones” and more emotional clips). Concerning the clusters obtained with the K-

means algorithm, it is clearly seen that this method is the one that produced the greater amount of

clusters, although it is also the most difficult method to evaluate. Despite the fact that the length of each

cluster is smaller, and as said before for the hierarchical clustering method, smaller clusters meant that

each cluster contained only relevant clips of the movie, in this case, some of the smaller clusters contain

both relevant scenes as well as ”dead zones”. Even though two clusters seemed to stand out, clusters

3 and 5, they contained more intense emotional scenes than ”dead zones”, which suggests that the

audience had a similar high arousal emotional response in these clusters.

In Figure 4.10 it is possible to observe the categorization achieved with 2 distinct hierarchical cluster-

ing algorithms, with the average linkage (Figure 4.10a) and with the ward linkage (Figure 4.10b). Based
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on the data clustering with the ward linkage, it is possible to see, as expected, that each cluster is almost

completely separated from the reaming ones; this happens since this algorithm aims to cluster data in

order to minimal the variance within each group. On the other hand, the average linkage although it

may suggest that the clusters are not correctly separated, especially clusters 0 and 2, this method de-

termines the distance between an observation and a cluster based on the average distance between

that observation and each element of the cluster, which can result in the clusters not appearing to be

precisely separated in a reduced dimension case, such as this one.

Lastly, a comparison of the results achieved with the clustering methods with the MAP (considered

as a validated method for emotional response profiling) is made in Figure 4.11. Since the clusters and

the MAP have the same time resolution, the mean and STD of MAP was determined for each cluster.

So, if the clusters containing exclusively emotional movie clips are located in the peaks of the MAP, this

means that these groups contain the part of the movie where the audience had a stronger emotional

reaction. This would validate the correlation between intense scenes and strong emotional reactions,

and the successful clustering of the more intense emotional reactions of the audience. In Table 4.2 it

is possible to see that the clusters obtained with the hierarchical clustering with ward linkage have the

lowest mean MAP. Furthermore, in Figure 4.11 it is possible to see that all clusters of this method are

spread out through the whole duration of the film, not being located exclusively near the MAP peaks, as

such these clusters did not group the parts of the movie where the audience had a stronger reaction.

On the other hand, the smaller clusters obtained with the hierarchical clustering with average linkage

have higher mean MAP, meaning that the clusters obtained through this method correspond to the areas

where the audience had a more intense reaction, as expected from the analysis of the clips contained

in these clusters.

Moreover, in Figure 4.11 it is possible to see that these clusters are almost all located near the

MAP peaks, thus confirming that this method achieved good results by grouping the parts of the movie

where the audience had a more intense emotional reaction. Comparing the results of the hierarchical

clustering with average, single and complete linkage, it is possible to see that the smaller clusters of

these methods all achieved relatively good mean MAP, when compared to the average MAP throughout

the whole duration of the movie. However, the average linkage method provides one additional cluster,

being the one that obtains the highest amount of relevant clips; besides this, each clip in clusters 1 and

2 is located in the areas with higher audience arousal. Furthermore, clips in cluster 1 have the highest

mean MAP of all clusters, thus tending to be located in the areas with higher audience arousal than the

ones in cluster 2, suggesting that this method also provides a differentiation within the emotional parts

of the films. With respect to the k-means method, the clips in each cluster seem to be randomly spread

throughout the movie, although the two clusters that stood out tend to have more clips in the high arousal

areas.
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In conclusion, it is possible to determine the areas of the movie where the audience experienced an

emotional reaction with higher intensity. When comparing this clustering methodology with the literature

MAP, the best performing methodology was hierarchical clustering with average linkage, since it pro-

vides a higher number of clusters with more areas in which the audience had a more intense emotional

reaction and it also differentiates the areas in which the audience reacted based on the intensity of such

emotional reaction, i.e. it ranks the already stronger emotional reactions based on their intensity level

into different clusters. Nevertheless, these results only provide insight to when and how much an audi-

ence reacts; they are mainly related to the Arousal dimension of emotion since the only physiological

signal acquired was the EDA (see Section 2.4). To have an insight into the Valence level of the audience

(how the audience reacted), other physiological signals related to the Valence, such as the PPG, should

be analysed.
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This chapter presents the development of the real-time collective emotional self-assessment tool.

Section 5.1 presents the motive which led to the development of this tool and Section 5.2 comprises an

overview of the state of the art in the scope of emotional self-assessment tools. Section 5.3 describes

the approach followed during the construction of this tool, along with the steps taken during its testing.

Lastly, Section 5.4 presents the results achieved in the evaluation of this tool and Section 5.5 discusses

such results evaluating the usability of the tool developed.

5.1 Motivation

Emotion recognition has seen increasing popularity within the field of affective computing [11]. Most

research in this area have a common denominator, which is the need for ground-truth data [7]; this is a

core component in the development of emotion recognition algorithms, in particular, to train classifiers

and validate their performance. This data is usually acquired with self-assessment methods, such as

questionnaires filled by participants to report their own emotional state [24, 61]. The trend in the area

is to explore data acquired in-the-wild, i.e., in environments where subjects observe previously unseen

content [28,46,61], where standard annotation methods are difficult to apply.

Some assessment methods used are based on post-experiment analysis. So, there is a great latency

period between experiencing an emotion and its annotation/description, since participants only describe

the emotions experienced after the elicitation content is over, and provide only a global overview of the

entire video clip. As such, there is an uncertainty as to which exact moment triggered their emotional

response. This problem is exacerbated when using long duration elicitation contents, such as movies or

documentaries [27,52].

Furthermore, the current methods to annotate long duration content show some limitations, such

as being built upon continuous emotion models, with predefined ranges on the emotional dimensions.

When annotating data in-the-wild and in real-time, while observing previously unseen content, this can

be a limitation since it is impossible to go back and correct given input levels misinterpreting the levels

range, should the subject experience higher or lower extreme stimuli. Thus, if the participant were to

annotate the maximum allowed value in one of the emotional dimensions, it would be impossible to

correctly annotate a future emotion with higher intensity on that dimension. For example, using the

Arousal-Valence model with values between 1 and 5 for each dimension, the participant annotates an

emotion which he rates with a value of 5 in Arousal, although a further scene from the movie elicits

a more intense emotion; in this case, it would impossible to correctly annotate the second emotion

experienced. Another limitation of these methods is that most of them are desktop-based, and can

only be used for emotional elicitation using video content, thus not being very versatile. Furthermore,

performing an emotional annotation using a PC in a group environment would require users to have
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their own PC or the annotation to be performed in turn which would take a significant amount of time.

However, most people nowadays carry a smartphone with them, so using this device which users are

very familiar with would be faster and easier [76].

With this in consideration, this work seeks to explore the use of smartphones as a self-assessment

annotation tool. It builds upon the Valence-Arousal model, to enable subjects to report their rating with

any sort of elicitation material, in specific while watching long duration audiovisual content in-the-wild

(e.g. a movie or a documentary), providing minimal distraction from the content being watched.

5.2 State-of-the-Art

Although, in recent years some studies have been reported the use of emotional assessment in real

time, these are still in smaller number than those not applying this method. Nevertheless, Cowie et.

al [77] and Girard et. al [78] proposed a tool that allows participants to watch a video elicitation in half

a screen and in the other half annotate one dimension of the emotion (Valence) experienced, using a

slider scale. The work of Sharma et. al [79], Girard et. al [80], Yannakakis et. al [81] and Cowie et. al [33]

improved on the previous developments, by creating an annotation tool with two dimensions, Valence

and Arousal, where the annotation is performed with a joystick or mouse, while watching the elicitation

video on the rest of the screen.

As the number of smartphone users increases, and with the pervasiveness of these devices, there

is a growing interest in using smartphones for annotation. Thus, Zhang et. al [76], built upon the work

of Sharma et. al, to create an annotation tool using a smartphone with a joystick to annotate emotional

experience in a Valence-Arousal space, which is overlapped in the bottom right corner with the video

elicitation shown in the rest of the screen. Another work using smartphones for emotional annotation

was developed by Muaremi et. al [82], although in this case a discrete emotional model with the PANAS

questionnaire was used, with the aim of discretely acquiring data throughout the day.

The works of Lopes et. al [34] and Melhart et. al [35], proposed two annotation tools similar to

the ones developed by Cowie et. al [77] and Girard et. al [78], using a one dimensional continuous

emotional model. Although, in these works, the Arousal state is measured using a scale without upper

or lower limits. The lack of bounds enabled users to annotate more freely, without having to anticipate

future experiences, thus being more intuitive to use. Furthermore, this data could be normalized post-

hoc, restraining it between certain bounds and mapping it into Valence-Arousal scales which can be

compared across studies, without affecting the annotator’s experience. This also led to a increase in

inter-rater agreement.

We extend the work found in the state-of-the-art by: 1) Proposing an annotation tool relying solely on

the user’s smartphone; 2) Testing two alternative designs for annotation; 3) Using a continuous emotion
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model without upper or lower limits (unbounded); and 4) Allowing the annotation in different real-world

environments, accommodating elicitation methods that may not necessarily use the smartphone for

presentation (e.g. movie theaters, recitals, music concerts, live sports games, and related scenarios).

5.3 Proposed Methodology

This section is divided into four sectors. The first sector describes the overall characteristics of the

annotation tool developed, e.g. the two different version created, the emotion model used, etc. The

second sector describes the annotation phases in each version of the application. The third sector

presents the final pages of the application also describing how to store the acquired data. Finally, the

last sector describes how both versions of the annotation tool were tested in terms of usability and

mental workload.

Application Design

The developed application was designed to acquire the Valence and Arousal dimensions [15], which are

annotated by the user, and the time stamp in absolute values, which is automatically registered when an

annotation is given. By having the time stamp in absolute values it is possible to determine the instant of

the elicitation content in which each state was reported by the subject, enabling this system to be used

with a variety of elicitation materials and to always be possible to synchronize annotations and elicita-

tions. To determine the best design, two different interfaces were developed using distinct approaches,

namely a Two-step Sequential Annotation (TSSA) version and a One-step Matrix Annotation (OSMA).

This allowed us to determine, based on an end-user perspective, which annotation method provides the

least amount of distraction while efficiently collecting the data.

The first page of both versions of the app is the home page (Figure 5.1a). This page has two buttons,

the ”Start!” and the ”Help!” button. The start button initiates the acquisition by acquiring a neutral Valence

and Arousal pair together with the initial time instant, besides, it also directs the user to the annotation

page. The Start button should be pressed simultaneously with the start of the elicitation content, so that

the time instant saved corresponds to the start of the elicitation, although if the elicitation start instant is

also recorded in absolute terms it is still possible to link both results.

The ”Help!” button, as the name suggests, leads to a help page that contains a detailed explanation

on how to annotate one’s emotional state, together with the meaning of the terms Valence and Arousal,

along with a usage guide. This allows the subject to learn how to use the app and to become familiarized

with the app before using it. Since each version of the app has a different annotation method, each

version has a different help page, specific to that version.
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(a) Home Page. (b) Valence annotation TSSA. (c) Arousal annotation TSSA. (d) Annotation phase OSMA.

Figure 5.1: Main screens of both versions of the applications.

The applications developed were inspired by the SAM questionnaire [3]; as such, in both cases,

pictograms were used in the rating buttons to represent the extreme emotional states of the Valence-

Arousal axis. This approach was preferred over assigning words (e.g.) since cross-cultural issues

can have an influence on the interpretation of the terms, while symbols such as emoticons enable the

participant to relate to the emotions expressed by such images.

Annotation Phase

This sector is subdivided into two different parts, one for each version of the application developed.

The first part describes the annotation phase characteristics in the TSSA version and the second part

describes the annotation phase characteristics in the OSMA version.

Two-step Sequential Annotation

This version has two different pages, one for the Valence and one for the Arousal. After the start button is

pressed, the user is directed to the Valence page (Figure 5.1b). This page has 5 different buttons, each

one with a different pictogram from happy (top button) to unhappy (bottom button), and different color

tones representing a 5-point scale for the Valence values. After selecting a valence value by pressing

one of the buttons, the application proceeds to the Arousal page (Figure 5.1c). Here the user annotates

his/her Arousal level by touching the screen; the higher the number of touches the higher the reported

arousal. After one of the Valence buttons is pressed, there is no way of confirming the input value; on
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the other hand, the arousal input is always displayed on the screen during the annotation of this value.

Since this app is aimed for emotional annotations in the wild with uncalibrated and unseen content,

the participant has no way of knowing the intensity of future emotions. Furthermore, based on the

work developed by Lopes et. al [34] and Melhart et. al [35], and considering their promising results

using unbounded annotation of Arousal, the Arousal annotation in the TSSA version has no upper limit,

enabling the user to adjust higher and lower intensity states taking into consideration their previous state

level.

After the annotation of the Arousal value, the Valence and Arousal pair is registered along with the

annotation input time instant. Five seconds after, the application automatically redirects the user to the

valence page and waits for the next annotation. Hence, the annotation phase works in a cycle, where

each annotation starts from a neutral state. There is no limit for the number of annotation neither for

the time interval between annotations. This cycle is interrupted when the participant presses the ”End”

button in the top right corner of the valence page; this ends the annotation phase and directs the user

to the final page of the application. Ideally, this button is only pressed when the elicitation content being

watched ends.

One-Step Matrix Annotation

In the OSMA version, the annotations are registered using only one page for both the Arousal and

Valence values. Figure 5.1d shows the annotation page, where it is possible to see a layout with two

columns, the one on the left for the Valence and the one on the right for the Arousal. On both columns,

the user can annotate the level of the emotion experienced by pressing the upper or lower buttons

identified with the pictograms. This would increase or decrease, respectively, the reported level that is

displayed in the centre of the column.

The OSMA annotation method builds upon the work of Lopes et. al [34] and Melhart et. al [35], by

using an unbounded annotation for both Valence and Arousal dimensions. So, since both annotations

have no upper or lower limit the user can always introduce a more or less intense and more positive or

more negative emotion than the ones previously experienced.

Throughout the visualization of a movie, subjects usually do not jump from a very positive emotional

state to a very negative emotional state without passing through some neutral states in between. There-

fore, the emotional annotation in this version is continuous, meaning that after an emotion is registered

the app saves this emotional state as the baseline for the next emotion to be annotated. In order words,

the user only has to adjust the previous Valence and Arousal state by increasing or decreasing each

level by the desired amount, and this would result in the annotation of a new emotional state.

Using this method, participants only have to slightly adjust their emotional state instead of having

to record a completely new state every time, enabling a more continuous annotation. This also helps
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reducing the number of annotations required, since the user only has to annotate when a change in his

emotional state is experienced. In this case, the Valence and Arousal pairs, along with the time stamp,

are saved automatically after each annotation. The annotation phase is finished once the user presses

the ”End” button in the top right corner of the page. Once again, this button should only be pressed

when the elicitation content is over.

Post Study Questionnaire

The final page, which can be seen in Figure 5.2, has a small questionnaire with three questions where

the user is asked to evaluate the content regarding its engagement towards it, familiarity and liking on a

5 point Likert scale. In this page, it is also possible to fill an optional field with the participant’s number

(useful to distinguish between each participant’s annotation without needing any personal information,

ensuring the privacy of everyone). This field was set to be optional since in certain acquisitions the users

may perform the tasks individually, thus not requiring a participant number.

Lastly, to stored the data the user has to press the Send button at the bottom of the page. After this

button is pressed, the participant can choose a variety of different options to save or send the data; these

options can be seen in Figure 5.3. The preferable method is to send the data via email, in which case an

email address is already predefined as the destination, although it is possible to change it by introducing

an email address in the ”Email:” field and pressing the button ”Change email”. The data is exported via

a single Comma-Separated Values file, which is a very versatile format that can be analysed using a

variety of methods and environments.

Experimental Methods

To evaluate the performance of the two developed applications, an experimental evaluation was per-

formed. Both versions of the app were made available in the Google Play Store1,2. Subjects were asked

to download the app to their phones and watch a small audiovisual content with a duration of 5 minutes

while using the app. After the download has been done, the participant read the help page of the app,

to understand how to use it and to become familiarized with the application. If there were any questions

from the subject regarding the use of the application or the procedure to be followed, these were clarified

to ensure that they fully understood how to use the app and the experiment protocol.

Afterwards, the content display was initialized and the participant pressed the Start button to initiate

the annotation phase. Throughout the visualization of the content, participants were asked to annotate

their emotional state. When the video ended, subjects pressed the End button to terminate the annota-

tion phase and fill the final page questionnaire (Figure 5.2). In the end, the annotations were sent via

1https://play.google.com/store/apps/details?id=com.emoteu.app
2https://play.google.com/store/apps/details?id=com.emoteu2.app
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Figure 5.2: Engagement, familiarity and liking page. Figure 5.3: Annotation sharing options.

email, and participants were asked to fill an online questionnaire regarding their experience when using

the application.

This questionnaire consisted of two groups of questions. The first one corresponded to the SUS

questionnaire [83,84], which contains 10 questions; these questions are half worded positively, half neg-

atively, and answers were given in a 5-point Likert scale with anchors for ”Strongly agree” and ”Strongly

disagree” [83]. This method has been widely used and shown not to be biased against gender or cer-

tain types of user interfaces [84]. Additionally, two optional open questions were also added aimed at

obtaining the users’ opinion regarding the best and worst features of the app, along with improvement

suggestions.

The first question of the SUS questionnaire, ”I think that I would like to use this system frequently ”,

was changed since this system is not aimed at being used on a regular basis. So, in order to better

represent the software being assessed, this question was replaced with the question: ”I would repeat

the experience”. This way it would not break the standard positive/negative statement balance of the

SUS.

Lewis et al. [8] proposed a grading scale (represented in Table 5.1) constructed based on a large

data sets with thousands of individual SUS questionnaires and hundreds of studies. This represents a

good general guide for the interpretation of the SUS results, by grading them on a scale from A to F,

based on the percentage of systems that obtained each score. In other words, out of all the systems

contained in the data set evaluated by Lewis et al. [8], only the top 4% best systems achieved a SUS
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Table 5.1: SUS grading scale and percentiles [8].

SUS Score Range 84.1 -
100

80.8 -
84.0

78.9 -
80.7

77.2 -
78.8

74.1 -
77.1

72.6 -
74.0

71.1 -
72.5

65.0 -
71.0

62.7 -
64.9

51.7 -
62.6

0.0 -
51.6

Grade A+ A A- B+ B B- C+ C C- D F
Percentile Range 96-100 90-95 85-89 80-84 70-79 65-69 60-64 41-59 35-40 15-34 0-14

Table 5.2: Deciles and Quartiles of the global NASA-TLX analysis [9].

Percentile Min 10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90% Max
Score 6.21 26.08 33.00 36.77 39.45 45.00 49.93 53.97 58.00 60.00 62.00 68.00 88.50

score between 84.1 and 100, being rated with an A+ grade.

The first step to obtain the SUS results is to convert the raw scores for each question to an adjusted

score raging from 0 (poorest rating) to 4 (best rating). Given that the questions are half worded positively

and half negatively, the scoring consists of subtracting 1 from the raw positively worded scores and

subtracting the raw score of the negatively worded questions from 5. Afterwards, the sum of the adjusted

scores is computed and then multiplied by 2.5 to obtain the standard SUS score, ranging form 0 to

100 [83, 84]. This calculation is summarized in Equation (5.1) (the SUSn characters represent the raw

score given in the n question of the SUS questionnaire):

SUS = 2.5(20 +

9∑
n=1 | odd n

(SUSn)−
10∑

n=2 | even n

(SUSn)) (5.1)

A second questionnaire, the NASA-RTLX, was given to the volunteers to measure the participants’

subjective mental workload. The mental workload is obtained based on six subscales: mental demand;

physical demand; temporal demand; frustration; effort; and performance [85]. Each subscale is rated

in a 7-point Likert scale with anchors for ”Very Low” and ”Very High”. The results from each sub-

scale are then converted to a relative scale from 0 to 100, and the average result per participant is

determined. The NASA-RTLX is a simplification of the NASA Task Load Index since this questionnaire

is composed of 2 separate parts and the NASA-RTLX only has one of these parts. In the second

component of the NASA Task Load Index, participants choose the most significant sub-scale in each

of the 15 combinatorial pairings of sub-scales [85]. However, there is a high correlation between the

results from both questionnaires [9], so the NASA-RTLX was determined to be the best questionnaire to

assess the participants’ subjective mental workload due to its effectiveness and simplicity.

The mental workload of the system is obtained by performing the average of all the participants’

scores [9]. In the work of Grier et al. [9], a rating scale was proposed which makes it possible to

establish in which percentile of the NASA-TLX score the system developed is rated, concerning other

systems evaluated with this method. This scale is represented in Table 5.2, where it is possible to see

that if a given system has a mental workload score of 20, this system would be in the top 10% best

systems evaluated in the work of Grier et al. [9].
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The SUS evaluates the usability of the system, thus, obtaining a high SUS score means that the tool

being evaluated has high usability and is easy to manipulate. The NASA-RTLX measures the mental

workload during the use of the system and, consequently, a low mental workload score implies that the

tool being evaluated does not require an elevated level of concentration to be used correctly. Given the

analysis being performed in this work, the ideal results would be to achieve a high SUS score and a low

NASA-RTLX score. Since this work aims to evaluate the use of the application itself, the Valence and

Arousal ratings will not be analysed.

5.4 Results

A total of 16 participants, 9 female and 7 males, aged between 21 and 34 years old (µ=24.38, σ=3.35)

participated in this experiment. This corresponded to 26 answers to the online questionnaire, 10 for the

TSSA and 16 for the OSMA. The SUS scores obtained were 82.75 ± 5.29 for the TSSA and 82.66 ±

8.25 for the OSMA. On the other hand, the NASA-RTLX scores obtained were 44.52 ± 7.26 for the

TSSA and 37.50 ± 6.77 for the OSMA. The results for each question in each scoring system can be

seen in Table A.1 and Table A.2, respectively.

Regarding the answers to the open questions present in the questionnaire, these consisted mainly

in small improvement suggestions, such as adding a small video tutorial in the help page or changing

the application design to be more engaging for the user. On the other hand, some answers described

the best qualities of the application for the user, these included comments regarding how simple and

accessible both versions were. It should be noted that in participants who tested both versions of the

app, the functionality of the OSMA version to save the current emotional state as the baseline for the

next emotion to be annotated, was pointed out to be a highly appreciated feature, enabling a quicker

and user friendly annotation with lower mental workload.

5.5 Discussion

Based on the the SUS results and on Table 5.1, both versions obtained an A grade, meaning that both

applications are on the top 10% best systems according to the SUS scoring method [8]. On the other

hand, based on the NASA-RTLX scores and on Table 5.2, the TSSA version is on the top 40% best

systems evaluated through this method, and the OSMA is on the top 30% best systems. The SUS

revealed that both version of the app have high levels of usability, thus being very easy to used. In terms

of the NASA-RTLX, these revealed that both versions introduce some level of mental load, although it is

low.

The obtained outcomes are very promising, showing that the developed applications are able to
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report one’s emotional experience without much distraction from the content being watched. The SUS

scores from both versions had a minimal difference of 0.09 between them. However, the NASA-RTLX

were quite different, with the OSMA obtaining a considerably lower score compared to the TSSA. So,

both versions have a similar usabilities, although the OSMA has lower mental workload leading to a

more intuitive use of this version, and constituting a lesser source of distraction from the content being

observed. As such, the OSMA version was considered to be the preferable approach for real-time

emotion annotation, better achieving the desired goals.

To conclude, the experimental results are in agreement with the literature, with rank unbounded

annotation being the most promising approach for emotion annotation with higher reliability [34, 35].

Regarding the objectives set in the beginning of this work, these were considerate to be achieved with

the development of the two smartphone applications for emotional annotation. The developed tools

revealed a low mental workload and high usability, leading to the conclusion that they can be used

in real world scenario, providing a reliable emotional annotation with minimal distraction. Lastly, since

these tools were developed for smartphones, which have a high mobility and adaptability, it is possible

to use them with a variety of elicitation materials.
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6.1 Motivation

The EDA is strongly correlated with the Arousal dimension of emotions, although it provides a limited

amount of information regarding the Valence dimension. Thus, by only acquiring this signal an important

aspect of emotion analysis is being disregarded. By combining the information obtained through the EDA

with another physiological signal, correlated with the Valence dimension, it would fill in the blanks left by

the EDA and enable a more comprehensive analysis towards emotion recognition. This way each signal

would be strongly related to a different emotion dimension. The second signal to be acquired would need

to fill some requirements, being the most relevant one that it needs to provide information regarding the

Valence dimension of emotions. Another desired characteristic of this signal is that it should be non

intrusive and easy to collect, preferably it should be possible to collect in the hand/wrist area as well.

Based on these requirements, the proposed physiological signal to be used is the PPG [1].

To develop a biomedical device aimed at collecting any sort of physiological data, or to process

physiological signals, an important factor is the minimum SF of the device. This characteristic has a

great influence on the quality of the acquired data. Using a sampling rate below the optimal may result

in aliasing, in which there is a great loss of data making it impossible to correctly reconstruct the signal

at hand. On the other hand, using a sampling rate too high increases the computation load and storage

necessary to process and save the data, increasing also the power consumption of the device, creating

the need for a larger battery, hence leading to a larger device. Theoretically, the minimum SF can be

determined by the Nyquist-Shannon theorem: according to this theorem the minimum SF should have

a value be at least two times larger than the highest frequency of the signal (ws > 2wm, where ws is the

sampling frequency and the wm is the maximum frequency of the signal) [86]. Although, the acquisition

system characteristics are not always known or precisely specified, difficulting the processing tasks.

There are other factor which influence the decision to select a minimum SF. In the case of emotion

analysis, the onset and peak detection on EDA signals may also influence this decision. Furthermore,

the interpolation techniques used to reconstruct the signal into a higher SF also affect the minimum SF

since some techniques allow the usage of lower SF. The type of sensors used and the characteristics of

the filter should also be taken in consideration. Lastly, the experiment settings are also a crucial factor:

individual versus collective acquisitions have very distinct requirements. In group acquisitions there are

several devices in the same network interchanging data, thus considerably increasing the probability

of data-loss due to collisions, and leading to the need of using a lower SF to reduce the data loss. In

individual data acquisition, this is not such a considerable issue, thus allowing the use of higher SF

compared to group settings.

As such, in order to acquire 2 physiological signals simultaneously in a group environment, a new

device needed to be used, since the FMCI only allows the acquisition of the EDA signal alone, with
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a sampling frequency of 1 Hz. The chosen device was the BiTalino R-IoT1, which is able to acquired

2 physiological signals from several subjects simultaneously. The present work focuses on the bench-

marking the BITalino R-IoT device against a reference device, to guarantee that it performs correctly and

acquires high-quality data, without any loss of information.

6.2 State-of-the-Art

In the field of emotion recognition, several studies have been performed using only the EDA signal as a

way of analysing the individual affective state. This is the case of the work developed by Wang et al. [6],

in which the EDA signal is used to assess the volunteer response to an audio track of a commercial, and

later to help in the design of new advertisements. However, the use of this signal alone has been seen

as a limitation, since it mostly provides information regarding the Arousal dimension of emotions. Liapis

et al. [26], focused on stress recognition in human-computer interactions, such as slow network speed,

and although the findings of this study seemed promising, the usage of additional physiological signals

was denoted as a requirement for improvement in future works. The work of Fleureau et al. [45] and

Li et al. [42] both focused on measuring an audience reaction to an audio-visual content based on the

EDA signal. Although the continuous model of emotion was utilized in both scenarios, only the Arousal

dimension was evaluated since it is the one related to the EDA; this was seen as a limitation by the

authors of both articles and could be solved with the collection of additional physiological signals.

Benchmarking is the process of determining the highest standards of excellence for a product and

if necessary make the improvements needed to reach such standards. In other words, benchmarking

raises the standard of products and identifies those who cannot keep up [87]. The comparison results

between a new device and an established reference can be evaluated in terms of accuracy, reliability

and feasibility. A new device can be labelled as sufficiently accurate if its measurements are shown

to be comparable to those obtained by the reference in the same conditions. However, this evaluation

is relative to the type of data and the goal of its use, for example, to develop a continuous monitoring

system that measures the HR of a patient, collecting the PPG signal is sufficiently accurate in relation

to the ECG signal. The reliability and feasibility evaluate the system in terms of reproducibility and

applicability to a given specific settings, respectively [88].

Kleckner et al. [88] proposed six steps for benchmarking mobile devices in psychophysiological and

physical activity research. These steps are: Step 1 - Identify signals of interest; Step 2 - Characterize

intended use cases; Step 3 - Identify study-specific pragmatic needs; Step 4 - Select devices for evalua-

tion; Step 5 - Establish assessment procedures; Step 6 - Perform qualitative and quantitative analyses.

These steps can help guide the benchmarking process.

1https://bitalino.com/storage/uploads/media/manual-riot-v12.pdf
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In the work developed by Batista et al. [89] the low-cost and easy-to-use toolkit BITalino (r)evolution

was benchmarked against the established reference BioPac MP35 Student Lab Pro (BSL), using four

signals: ECG, electromyography, EDA and electroencephalography. This work revealed that the signals

acquired by the BITalino (r)evolution were similar to those acquired with the well-established devices

which further confirmed the results found in [90].

The problem of finding the minimum SF has been tackled several times throughout the years, leading

to several papers being published regarding this topic. Due to its clinical relevance, the majority of

studies focus on ECG signals. In [91] the authors recommend a range between 250 and 500 Hz for

ECG, with a slightly lower frequency of 100 Hz also being possible to use, although, only if coupled with

quadratic interpolation to refine the R-peak. Ellis et al. [92] studies the effect of lower SF on an ECG

signal originally recorded at 1000 Hz. In this work, the impact of a lower SF is evaluated across 24

widely used time- and frequency-domain measures of HRV on healthy subjects. Ziemssen et al. [93]

analyses the impact of the sampling frequency in ECG signals originally recorded with 500 Hz SF and

downsampled to 200 and 100 Hz. The 100 Hz was shown to be sufficient in healthy individuals, and

to have minor influence in pathological patients. The overall recommend SF for ECG was 100 Hz with

interpolation.

A relevant work is the one developed by Béres et al. [94], although this study was developed using

PPG and not EDA, the methodology followed was very comprehensive. Data were acquired from healthy

individuals at 1kHz and down-sampled by a factor of 2, 5, 10, 20, 50, 100, 200, 500. The decimated

data were then interpolated back to 1kHz using cubic and quadratic splines. The results revealed that a

SF of at least 50 Hz without interpolation and, 10 Hz and 20 Hz with interpolation is required to achieve

an acceptable standard deviation and root mean square of successive RR-differences.

Regarding the EDA, the literature is very reduced. Boucsein [4] reports sampling rates between 10

and 40 Hz in his work. Moreover, the author recommends the use of 20 Hz SF, which can be decreased

down to 1 Hz for EDL data. However, he notices that in cases where EDA decomposition may be

necessary, the SF must be increased from 1Hz to values between 4 to 8 Hz.

6.3 Proposed Methodology

Benchmarking of the BITalino R-IoT

In previous researches the FMCI device has been benchmarked with the BITalino (r)evolution as a

reference [43]. As such, the current work of benchmarking of the BITalino R-IoT, also uses the BITalino

(r)evolution as a reference.

The BITalino (r)evolution has been tested several times in the past, revealing to be a reliable phys-

iological signal acquisition tool, obtaining high quality data [89, 90]. Furthermore, this device is able to
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acquire data from 6 different channels at the same time. However, with BITalino (r)evolution it is only

possible to simultaneously acquired data from 3 devices due to its communication via Bluetooth and the

high data throughput2,3. Since the BITalino (r)evolution has a limit of 3 devices acquiring simultaneously,

it can not be used as an acquisition tool in group settings. Nonetheless, due to its scientifically validated

multi-sensor acquisition capabilities, it can be used as a reference in this work.

The device being evaluated in the current work, the BITalino R-IoT, communicates via Wi-Fi which

enables it to collect information from several devices simultaneously, eliminating the limitation set with the

Bluetooth communication in the BITalino (r)evolution. Furthermore, the BITalino R-IoT acquires data with

200 Hz SF, which as been shown to be enough for most physiological signals, namely the ones herein

foreseen (EDA and PPG) [94]. This device is composed of a rechargeable 3.7 V battery, it contains

integrated accelerometer, gyroscope, magnetometer and Euler angles calculation with 3 degrees of

freedom along with a temperature sensor [95]4. Moreover, it is also possible to add two additional

sensors with 12-bit resolution, used to collect EDA and PPG data in this case.

For the current work data was acquired from volunteers, older than 18 years old, without any known

pathology. Participants were asked not to be under the effect of alcohol or medication before and during

the experiment, and in case they show any limitation either physical or psychological, necessary for the

realization of the experiment they would not be allowed to participate.

The data acquisition was carried out in an individual setting, using both devices simultaneously, with

the electrodes placed on the subjects non-dominant hand according to Figure 6.1. Each acquisition was

composed of 3 sequential tasks, each one with the duration of 20 minutes, comprising a total duration

of 1 hour. The first task consisted in watching video chosen by the participant (usually correspond to an

episode of a series). In the second task, the participant was playing some computer/mobile games. The

last task consisted in following a meditation guide. The goal of these tasks was to elicit different states,

i.e. the first task was to elicit a neutral state, followed by a stressful situation during the game, ending

with a relaxation period, although for this part of the work the specificity of the events is not relevant.

Figure 6.1: EDA and PPG sensor placement for benchmarking purposes.

To synchronise the data collected by the two devices, accelerometer data was acquired by the BITal-
2https://plux.info/software/43-opensignals-revolution-000000000.html
3https://www.bluetooth.com/specifications/bluetooth-core-specification/
4https://bitalino.com/storage/uploads/media/manual-riot-v12.pdf
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ino (r)evolution using a sensor placed on the BITalino R-IoT shell. The synchronization was achieved

by creating a prominent peak in the acceleration signals of both devices with a small stroke on the sen-

sors. Given that the sensors remained still for the rest of the acquisition, the signals would be constant

throughout the acquisition, except for this peak, thus marking the beginning of the acquisition in both

devices. During the signal processing step, the acquired signals from each device were cropped on the

acceleration peak location of their device.

The acquired signals from each device were stored in different HDF55 files in a hierarchical format.

For each user a two signal dataset were created containing all the information acquired from this user

(one for each device). Data processing was conducted on a Python 3 environment, with the support of

BioSPPy (version 2) toolbox [19], a publicly available set of signal processing tools to analyse biosignals.

Since the signals acquired with the BITalino R-IoT had a lower SF, these where interpolated to the same

SF as the BITalino (r)evolution (1000Hz) using a cubic spline interpolation. Afterwards, the quality of

the each signal was evaluated manually; this assessment was performed based on saturated signals,

disconnections in the mid acquisition, and signals with a constant amplitude. The signals were smoothed

using the 15×SF point moving average following the approach described in [74].

Finally, the identification of the fiducial points was performed using the resources of the BioSPPy

library, selecting amongst the several algorithms available based on approaches described in the litera-

ture. For PPG systolic peak detection, the algorithm proposed by Elgendi was used [96]. This algorithm

relies on squaring, generating blocks of interest, and defining a threshold to detect systolic peaks. The

parameters W1, W2 and Beta were set to be 0.18, 0.69 and 0.01, respectively. For the EDA, these

points were detected using the same process described in Section 4.3.

The comparison between the signals acquired with both devices was achieved based on the detected

peaks and onsets of the PPG and EDA signals, respectively. The first step in this comparison was to

match the detected points for each pair of signals (PPG and EDA) acquired by the two devices, to avoid

mismatching with false peaks from noise and motion artifacts.

To compare the data morphology, the PCC was calculated between the signals of the two devices.

For the PPG these values were calculated for a time period which corresponded to 0.25 s before the

detected peaks and 0.5 s after. For the EDA these values were calculated between the onset and end

point of each event. Beyond these metrics, the number of detected peaks was also evaluated (for both

EDA and PPG signals), along with an extraction of the HR from the PPG signals.

Influence of the Sampling Frequency in EDA signals

To perform the analysis of the minimum SF, the CoolWorking dataset provided by BrainAnswer [97] was

used. The data set was acquired to study the impact in physiological signals and in the individuals’

5https://www.hdfgroup.org/solutions/hdf5/
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Table 6.1: Overview of EDA sensors specifications.

BITalino EDA
Range 0 – 25 µS (with VCC = 3.3V)
Bandwidth 0 – 2.8 Hz
Consumption ± 0.1 mA
Type Exosomatic

performance while performing psychometric tests during a 2-day sleepless event for students. For this

study, 98 records from the dataset were used, in which the participants’ ages ranged from 15 and 30

years old (µ = 20.4, σ = 3.3), with 70.4% (69) identified as female and 29.6% (29) as male.

The data was acquired using a BITalino (r)evolution [98] with 10-bit resolution at 1KHz. The EDA

was acquired with two Ag/AgCl electrodes: one was placed on the index finger and the other on the ring

finger of the left hand 6, the specifications of the EDA sensor can be seen in Table 6.1 7.

The selected files were initially analysed manually, which resulted in a removal of 8 files, leaving 90

to be further analysed. The selection criteria was based on morphology of the signals, i.e. saturated

signals, disconnections mid acquisition, and signals with a constant amplitude were excluded.

To evaluate the impact of low SF on the quality of the signal, the data from each participant was

downsampled to 500, 200, 100, 50, 20, 10 and 1 Hz. These signals were then interpolated back to

1000 Hz SF with 4 different interpolation methods to test their effect on onset time estimation. These

methods were: no interpolation, linear spline, quadratic spline and cubic spline using the SciPy 1.7

Python library [99] implementation.

The onset detection was performed using the same methodology as the one described in Section 4.3.

Afterwards, time and amplitude differences were then computed between the original 1 kHz signals and

their downsampled versions.

To study how EDA signals are distorted with different sampling rates, the original 1kHz filtered signals

and the interpolated downsampled signals were first segmented between each event onset and the end

point. To perform a waveform distortion analysis, the PCC was used. This coefficient is computed

between two signals, and it gives a normalized measure of linear correlation. By computing the PCC

between a segment and its interpolated downsampled version, it is possible to verify the overall profile

of correlation of the segments. The PCC was then calculated using the simultaneous event segments,

these values were only calculated for the linear, quadratic and cubic spline, since the signals to be

correlated are required to have the same number of points (in the case of the no interpolation method

the signal has a fewer amount of points due to downsampling).

6https://plux.info/electrodes/60-non-gelled-reusable-agagcl-electrodes-870122114.html
7https://bitalino.com/storage/uploads/media/eda-sensor-datasheet-revb.pdf
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(a) (b)

Figure 6.2: Representation of the synchronization process with the acceleration and PPG data (a) and determina-
tion of the PPG temporal difference between the two devices being evaluated (b).

6.4 Results

Benchmarking of the BITalino R-IoT

The current work is based on the data acquired from 3 volunteers, from whom 2 where male, the average

age of the participants was 23 years old, with a STD of 1.4.

In Figure 6.2a it is possible to observe the two YY axis, the left one corresponds to the PPG data

acquired from by the BITalino R-IoT and the BITalino (r)evolution, in blue and orange, respectively. The

right YY axis corresponds acceleration data collected by the BITalino R-IoT and the BITalino (r)evolution,

in green and pink, respectively. Figure 6.2b follows the same principles as the previous figure; it is also

possible to observe two YY axis, with the left one corresponding to the PPG data acquired with both

devices, using the same color code. The right YY axis represents the time differences in the detected

peaks of each signal. In this figure it is also possible to see the detected peak presented with small

triangles in the color of each device. These images only display the PPG signal since this is a higher

frequency signal, having more peaks than the EDA and being more complex, so it is more accurate to

evaluate the synchrony between the two devices with the PPG data.

In Table 6.2 it is possible to see a comparison between the PPG signals extracted with both devices

in terms of the number of detected peaks, waveform similarities using PCC values, temporal difference

in the detected peaks on each signal, and the HR extracted from each signal. In a similar manner,

Table 6.3 displays a comparison between the EDA signals extracted with both devices in terms of the

number of detected onsets, waveform similarities using PCC values, temporal differences in detected

onsets on each signal and event duration.
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Table 6.2: Comparison between the number of detected peaks, PCC, temporal difference and extracted HR for the
PPG signal extracted with the BITalino (r)evolution and BITalino R-IoT.

Nb Values Waveform Similarity Time difference (s) HR (bpm)

Participant #N peaks
R-IoT

#N peaks
(r)evolution

% matched
peaks Mean PCC STD PCC Min PCC Mean STD Max Min R-IoT (r)evolution

0 3633 3747 89,78 0,91 0,15 0,02 -0,02 0,02 0,10 -0,10 77,8 77,7
1 3287 3228 96,59 0,96 0,08 -0,02 -0,01 0,02 0,10 -0,10 62,29 62,29
2 3961 3979 96,33 0,97 0,06 -0,47 -0,04 0,02 0,09 -0,10 68,65 68,66

Overall 10881 10954 94,17 0,94 0,11 -0,47 -0,03 0,03 0,10 -0,10

Table 6.3: Comparison between number of detected onsets, PCC, temporal difference and event duration for the
EDA signal extracted with the BITalino (r)evolution and BITalino R-IoT.

Nb Values Waveform Similarity Time difference (s)

Participant #N onsets
R-IoT

#N onsets
(r)evolution % matched onsets Mean PCC STD PCC Min PCC Mean STD Max Min

0 57 46 45,65 0,91 0,18 0,26 -0,17 0,62 1,04 -1,94
1 62 63 88,89 0,98 0,05 0,66 -0,17 0,47 1,88 -1,24
2 104 97 93,81 0,98 0,05 0,64 -0,13 0,46 0,87 -1,64

Overall 249 235 72,34 0,96 0,15 0,26 -0,15 0,51 1,88 -1,94

Influence of the Sampling Frequency in EDA signals

In Table 6.4, it is possible to see a comparison in terms of the number of detected onsets, time difference,

amplitude error and PCC between the best interpolation method, cubic spline, and no interpolation (in

the PCC comparison, the linear interpolation was used instead of the no interpolation). Furthermore,

6393 onsets were detected in the original signal.

Figure 6.3 presents the comparison between the different interpolation methods (no interpolation,

linear spline, quadratic spline and cubic spline), for the same 10Hz DS, based on the box plots of the

time difference (Figure 6.3a) and the box plot of the amplitude difference (Figure 6.3b).

Table 6.4: Comparison between time difference, amplitude difference and PCC distribution metrics for no interpo-
lation and for interpolation by cubic splines in the EDA signal. The values for the different Downsampled
Frequency (DS) are shown, as well as mean and STD for each distribution. To compare PCC values,
linear spline interpolation values were used.

Onsets Time error (ms) Amplitude error (nS) PCC
Interpolation None CubicSpl. None CubicSpl. None CubicSpl. Linear CubicSpl.

DS (Hz) Counts Counts Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD
1 4275 5844 -66.3 294.4 -72.0 186.5 11.6 26.2 1.0 33.7 0.94 0.10 0.97 0.07

10 6342 6392 -0.9 28.8 0.0 0.2 0.2 0.4 0.0 0.0 1.00 0.00 1.00 0.00
20 6377 6393 -0.1 14.4 0.0 0.1 0.0 0.1 0.0 0.0 1.00 0.00 1.00 0.00
50 6393 6393 0.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.00 1.00 0.00
100 6393 6393 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.00 1.00 0.00
200 6393 6393 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.00 1.00 0.00
500 6393 6393 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 1.00 0.00 1.00 0.00
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(a) (b)

Figure 6.3: Box-plots of the EDA time (a) and amplitude (b) difference from the 1kHz signal with the different
interpolation methods using a DS of 10Hz.

6.5 Discussion

Benchmarking of the BITalino R-IoT

Figure 6.2a illustrates the synchronization performed based on the acceleration data. In the first time

instant it is possible to see an a very prominent peak in the acceleration data of both devices, while

the rest of the time the acceleration signals have small oscillations between very defined ranges. As

such, the initial peaks can be use to synchronize data from both devices marking the beginning of the

acquisition phase. From Figure 6.2b it is possible to see an almost perfect synchronization between the

two PPG signals, with the peak time differences being very close to 0.

Based on Table 6.2 it is possible to see that the PPG results achieved with both devices are very

similar. In terms of the number of detected peaks these are very close to each other, with about 95% of

the detected peaks being correctly matched between the two signals. Furthermore, the analysis on the

waveform similarities around each detected peak show a mean PCC value very close to 1, indicating

an almost perfect similarity in waveform of the PPG signals acquired with both devices. Even though,

the minimum PCC is close to 0 in the first 2 participants and smaller than 0 in the last participant,

which demonstrates almost no correlation in these areas, the STD is very small in all participants which

indicates a very low deviation from the mean value. All time difference values across the table are

considered to be very small, with the maximum and minimum time differences being 0.1 and -0.1 s,

which expresses a negligible time deviation in peak detection in the signals from the 2 devices. Lastly,

the differences in the HR extracted from each PPG signal are in the order of magnitude of 10−1, which

are also negligible considering the range of values for this metric.

Regarding the EDA signal comparison, Table 6.3 encompasses the results obtained. In this table it

is possible to see that there are some differences in the number of detected onsets and % of matched

onsets in participant 0, although in participants 1 and 2 the number of onsets are very close to each
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other, with about 90% matching onsets. Overall, the number of onsets detected with each device is

very similar, with the great majority of the detected onsets being matched between the two devices. In

terms of the waveform similarity, the mean PCC are above 0.9 for all participants, with an overall value of

0.94, which indicates an almost perfect similarity in waveform of the acquired EDA signals. The overall

minimum PCC is observed in participant 0, even though these value still demonstrates some similarities

in waveform. The observed mean EDA time differences are all considerably close to 0, showing a good

data correspondence across devices.

Lastly, it is possible to see that the mean time differences in both the PPG and EDA signals are all

negative, suggesting that the BITalino R-IoT acquires data with a small delay when compared to the

BITalino (r)evolution.

Influence of the Sampling Frequency in EDA signals

Based on Table 6.4, it is possible to see an improvement in the results from 1 to 10 Hz DS in both

interpolation methods, furthermore, one can observe that the results obtained with the cubic spline are

consistently better than with no interpolation methods. The number of onsets almost reaches the total

number of the original signal. The mean and STD time differences reach values very close to 0 ms for

the cubic spline; the no interpolation method still has a considerably high STD value. Regarding the

amplitude differences, although they were already considerably small with the 1Hz DS (since these are

represented in nS), with the 10 Hz DS these differences reach values of 0 for the cubic spline and values

close to 0 for the no interpolation method. Regarding the cubic spline, the following frequencies of 20,

50 and 100Hz show minor improvements concerning the 10 Hz reaching, in the latter frequency, both

time and amplitude errors of 0 across all criteria.

The remaining interpolation methods follow the same pattern as the previously mentioned. However,

in the case of the linear spline, there is no frequency for which the differences are all 0, similarly to the

no interpolation case; in the quadratic spline, this only occurs with the 500Hz downsampling frequency.

Furthermore, comparing the same frequency across all interpolation methods (as it is possible to see in

Figure 6.3 for the 10Hz DS). The best results are achieved using the cubic spline, closely followed by

the quadratic spline, with a great difference in amplitude; the following methods are the linear spline and

the no interpolation, being that the linear spline is still marginally better than the no interpolation.

In Table 6.4, it is possible to see the PCC for the linear interpolation case and the cubic spline. The

experimental results show an improvement from from 1 to 10Hz downsampling frequencies, as well from

the linear spline to the cubic spline. Although the results from the 1Hz frequency were already relatively

good in both scenarios, since the mean is very close to 1 and SD close to 0; the results from the 10 Hz

frequency have a mean value of exactly 1 with a SD of 0. The frequencies above 10Hz show perfect

results across the table (with regards to the PCC). The quadratic interpolation methods follows the same
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pattern as the one previously described.

A 10Hz signal interpolated with cubic splines presented accurate time and amplitude onset matching

with the 1kHz signal. Minimal distortion values are observed for 10Hz sampling rate and above. Hence,

the minimum SF recommended for a quality EDA acquisition is 10Hz; this value was selected based on

the trade-off between having a low sampling rate and an accurate measurement of the desired fiducials.

However, the 1Hz signal interpolated with cubic splines also achieved good results given the order of

magnitude of the measurements extracted from this signal i.e. latency time, rise time, amplitude, which

were presented in Section 2.4.
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Conclusions
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Throughout the current work, several problems related with real world group emotional analytics were

addressed. Regarding the group emotion analysis (Chapter 4, Analysis of the Synchrony between

Annotations), the annotations performed by the participants represent mainly neutral states, which was

not expected given that the movie consisted of a high-pass superhero movie, containing several fight

scenes, along with some emotional and comical parts. This revealed a lack of comprehension of the

annotation’s scales by the participants, a lack of engagement towards the content and/or the annotation

task. Furthermore, the evaluation of the EDA signal in simultaneous annotations revealed a tendency

to increase over the period of the annotations (which was not observed in the participants who did

not annotate in the same period of time). Nevertheless, the signals during simultaneous annotations

displayed few waveform similarities.

To overcome the annotation tool limitations, an emotional analysis solely based on the acquired phys-

iological signals and movie content was performed (Chapter 4, Collective Intelligence Analysis). This

analysis was conducted by extracting features from the mean EDA signal of the group and applying clus-

tering algorithms to group the areas of the movie where the audience experienced a similar emotional

reaction. The clustering results were then compared with the literature, namely the MAP. Based on this

analysis it was possible to conclude that best performing methodology was hierarchical clustering with

average linkage. This clustering methodology provides a higher number of areas in which the audience

had a more intense emotional reaction, divided into two distinct clusters with 7 and 15 emotional time

regions in each one. Furthermore, within the areas in which the audience had a more intense emotional

reaction, this method also provides a differentiation in the intensity of the reaction with one cluster having

a mean MAP of 4.84E-04 and the other cluster having a mean MAP of 1.73E-04.

In terms of real-time content annotation tool (Chapter 5), the results corroborate what was already

seen in the literature, i.e. rank unbounded annotation is the most promising approach for annotation of

previously uncalibrated and unseen content with higher reliability. Furthermore, a smartphone-based

annotation tool was proposed, and displayed a high usability and a low mental workload, thus providing

a reliable emotional annotation with minimal distraction. Although both versions achieved good results,

the OSMA version was considered to be the preferred version.

To address existing limitations in the real-world collective data acquisition, the BITalino R-IoT was

evaluated; this device revealed to be a great asset for the acquisition of physiological data in collective

environments, being able to collect two physiological signals simultaneously across several member

of an audience. With the use of this device it would be possible to collect EDA and PPG data, thus

providing a window of information to the Valence dimension of emotions. Based on the evaluation of the

minimum SF required for the acquisition of the EDA signal showed that the recommended SF is 10 Hz.

This value was determined based on a trade-off between having a low sampling rate and an accurate

measurement of the signal. This evaluation of the minimum SF and benchmarking of a new device able
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of acquiring one additional physiological signal in a group setting, establishes a path to future works in

the area of group emotion recognition.

Even though the recommend EDA SF was 10 Hz and the emotional analysis performed in this work

as based on the acquisition of EDA data with 1 Hz, the results and conclusions obtained were still consid-

ered to be valid. First of all, the time and amplitude errors achieved with the EDA data downsampled to

1 Hz are relatively low when compared to the measurements extracted from this signal i.e. latency time,

rise time, amplitude. Given the adverse circumstances (COVID-19 pandemic) in which this work was

performed, the data acquisition tasks had to be performed remotely which coupled with the complexity

of the problem (i.e. acquisition in group context requiring several participants in the same location si-

multaneously, especially during the pandemic situation; few acquisition device options and complicated

experimental set-up) and submissions to the ethics committee made these the best acquisitions that

could have been made. However, the current work gives a lead for futures work by evaluating the per-

formance of a new acquisition device for future acquisition, along with an experimental protocol and a

list of elicitation content to be used during such acquisitions.

Overall, the current work fulfilled the objectives drawn at the beginning, expanding the state-of-the-

art by developing a new self-assessment tool and implementing machine learning methods to emotional

assessment in a collective setting, namely of the audience EDA signal. Future work will focus on ex-

panding the database using the protocol developed with the BITalino R-IoT acquiring EDA and PPG

data; applying the developed emotional analysis method, namely the use of clustering algorithms on

features extracted from physiological signals, on other movies and further validate the annotation tool

developed.
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[2] J. Domı́nguez-Jiménez, K. Campo-Landines, J. Martı́nez-Santos, E. Delahoz, and S. Contreras-

Ortiz, “A machine learning model for emotion recognition from physiological signals,” Biomedical

Signal Processing and Control, vol. 55, p. 101646, 2020.

[3] M. Bradley and P. Lang, “Measuring emotion: the self-assessment manikin and the semantic differ-

ential,” Journal of Behavior Therapy and Experimental Psychiatry, vol. 25, no. 1, pp. 49–59, 1994.

[4] W. Boucsein, Electrodermal activity. Springer Science & Business Media, 2012.

[5] P. Bota, P. Cesar, H. Silva, and A. Fred, “Unveiling the potential of retrospective ground-truth col-

lection for affective computing.”

[6] C. Wang and P. Cesar, “Measuring audience responses of video advertisements using physiological

sensors,” in Proc. of the Int’l Workshop on Immersive Media Experiences, 2015, p. 37–40.

[7] P. Bota, C. Wang, A. Fred, and H. Silva, “A review, current challenges, and future possibilities on

emotion recognition using machine learning and physiological signals,” IEEE Access, vol. 7, pp.

140 990–141 020, 2019.

[8] J. Lewis and J. Sauro, “Item benchmarks for the system usability scale,” J. Usability Studies, vol. 13,

pp. 158–167, 2018.

[9] R. Grier, “How high is high? a meta-analysis of NASA-TLX global workload scores,” in Proc.of the

Human Factors and Ergonomics Society Annual Meeting, vol. 59, 2015, pp. 1727–1731.

[10] S. Basu, A. Bag, M. Mahadevappa, J. Mukherjee, and R. Guha, “Affect detection in normal groups

with the help of biological markers,” in Proc. of the Annual IEEE India Conf., 2015, pp. 1–6.

[11] S. Jerritta, M. Murugappan, R. Nagarajan, and K. Wan, “Physiological signals based human emo-

tion recognition: a review,” in Proc. of the IEEE Int’l Colloq. on Signal Processing and its Applica-

tions, 2011, pp. 410–415.

81



[12] P. Ekman, “An argument for basic emotions,” Cogn. & Emot., vol. 6, no. 3-4, pp. 169–200, 1992.

[13] R. Plutchik, “Emotion: A psychoevolutionary synthesis,” A psychoevolutionary synthesis, 1980.

[14] L. Shu, J. Xie, M. Yang, Z. Li, Z. Li, D. Liao, X. Xu, and X. Yang, “A review of emotion recognition

using physiological signals,” Sensors, vol. 18, no. 7, p. 2074, 2018.

[15] J. Russell, “Affective space is bipolar.” Journal of Personality and Social Psychology, vol. 37, pp.

345–356, 1979.

[16] A. Mehrabian, “Framework for a comprehensive description and measurement of emotional states.”

Genetic, social, and general psychology monographs, 1995.

[17] S. Barsade and D. Gibson, “Group affect: Its influence on individual and group outcomes,” Current

Directions in Psychological Science, vol. 21, no. 2, pp. 119–123, 2012.

[18] G. Salvador, P. Bota, V. Vinayagamoorthy, H. Silva, and A. Fred, “Smartphone-based content an-

notation for ground truth collection in affective computing.” Association for Computing Machinery,

2021.

[19] C. Carreiras, A. Alves, A. Lourenço, F. Canento, A. Silva, H. and. Fred et al., “BioSPPy:

Biosignal processing in Python,” 2015–, [Online; accessed 14/10/2021]. [Online]. Available:

https://github.com/PIA-Group/BioSPPy/

[20] D. Ellis and I. Tucker, Social psychology of emotion. Sage, 2015.

[21] W. Wundt, “Vorlesung über die menschen-und tierseele,” Siebente und Achte Auflage, 1922.

[22] A. Moors, P. Ellsworth, K. Scherer, and N. Frijda, “Appraisal theories of emotion: State of the art

and future development,” Emotion Review, vol. 5, no. 2, pp. 119–124, 2013.

[23] S. Schmidt, C. Tinti, L. Levine, and S. Testa, “Appraisals, emotions and emotion regulation: An

integrative approach,” Motivation and emotion, vol. 34, no. 1, pp. 63–72, 2010.

[24] Y. Hsu, J. Wang, W. Chiang, and C. Hung, “Automatic ECG-based emotion recognition in music

listening,” IEEE Transactions on Affective Computing, vol. 11, no. 1, pp. 85–99, 2020.

[25] D. Ciuk, A. Troy, and M. Jones, “Measuring emotion: Self-reports vs. physiological indicators,”

Physiological Indicators, 2015.

[26] A. Liapis, C. Katsanos, D. Sotiropoulos, M. Xenos, and N. Karousos, “Stress recognition in human-

computer interaction using physiological and self-reported data: a study of gender differences,” in

Proc. of the Panhellenic Conference on Informatics, 2015, pp. 323–328.

82

https://github.com/PIA-Group/BioSPPy/


[27] J. Miranda, M. Khomami, N. Sebe, and I. Patras, “AMIGOS: A dataset for Mood, personality and

affect research on Individuals and GrOupS,” IEEE Transactions on Affective Computing, 2017.

[28] A. Liapis, C. Katsanos, D. Sotiropoulos, M. Xenos, and N. Karousos, “Subjective assessment of

stress in HCI: A study of the valence-arousal scale using skin conductance,” in Proc. Int’l Conf. of

Biannual Conference on Italian SIGCHI Chapter, 2015, p. 174–177.

[29] J. Pollak, P. Adams, and G. Gay, “PAM: a photographic affect meter for frequent, in situ measure-

ment of affect,” in Proc. of the SIGCHI Conf. on Human factors in computing systems, 2011, pp.

725–734.

[30] S. Shiffman, A. Stone, and M. Hufford, “Ecological Momentary Assessment (EMA),” Annu. Rev.

Clin. Psychol., vol. 4, pp. 1–32, 2008.

[31] E. Hayashi, J. Posada, V. Maike, and M. Baranauskas, “Exploring new formats of the self-

assessment manikin in the design with children,” in Proc.of the Brazilian Symposium on Human

Factors in Computing Systems, 2016, pp. 1–10.

[32] D. Watson, L. Clark, and A. Tellegen, “Development and validation of brief measures of positive and

negative affect: the PANAS scales.” Journal of personality and social psychology, vol. 54, no. 6, p.

1063, 1988.

[33] R. Cowie, E. Douglas-Cowie, S. Savvidou, E. McMahon, M. Sawey, and M. Schröder, “’FEEL-
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Figure A.1: Examples of overlapped exosomatic EDR and method to estimate amplitudes. Adapted from [4].

Table A.1: Average SUS score per question.

Question TSSA OSMA
µ± σ µ± σ

I would repeat the experience 4.3±0.6 4.3±0.8
I found the system unnecessarily complex. 2.0±0.9 1.9±1.0
I thought the system was easy to use. 4.7±0.5 4.4±0.9
I think that I would need the support of a technical person
to be able to use this system.

1.3±0.6 1.3±0.8

I found the various functions in this system were well inte-
grated.

4.2±0.6 4.5±0.7

I thought there was too much inconsistency in this system. 1.6±0.7 1.9±1.1
I would imagine that most people would learn to use this
system very quickly.

4.8±0.4 4.3±1.0

I found the system very cumbersome to use. 2.4±1.0 2.0±1.1
I felt very confident using the system. 4.0±0.8 4.3±0.8
I needed to learn a lot of things before I could get going
with this system.

1.6±0.8 1.6±0.9

Final results. 82.75±5.29 82.66±8.25
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Table A.2: Average NASA-RTLX score per question.

Question TSSA OSMA
µ± σ µ± σ

How Mentally Demanding was using the app while watch-
ing the movie?

2.9±1.2 2.1±1.4

How Mentally Demanding was using the app while watch-
ing the movie?

3.6±1.6 2.6±1.6

How hurried or rushed was the pace of annotating your
emotions using the app?

4±0.9 3.6±1.4

How successful were you in accomplishing what you were
asked to do?

3.2±1.5 3.5±2.1

How hard did you have to work to accomplish your level of
performance?

2.7±1.0 1.9±0.7

How insecure, discouraged, irritated, stressed, and an-
noyed were you using the app?

2.3±1.1 2.1±1.2

Final results. 44.52±7.26 37.50±6.77

(a) (b)

Figure A.2: Mean Arousal (A.2a) and Valence (A.2b) annotations throughout the duration of the movie
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Table A.3: EDA time errors, amplitude errors and Pearson correlation coefficient values between downsampled
(DS) and original 1kHz signal for different interpolation methods and sampling frequencies. The number
of peak counts in each essay is presented as well as mean, STD, minimum (min) and maximum (max)
values. The Pearson correlation coefficient values and kurtosis of the estimated distribution are also
described.

Interpolation method: None
Time error (ms) Amplitude error (nS)DS (Hz) Counts mean STD min max mean STD min max

1 4275 -66.3 294.4 -975 942 11.6 26.2 -19 498
10 6342 -0.9 28.8 -56 53 0.2 0.4 0 8
20 6377 -0.1 14.4 -26 25 0.0 0.1 0 3
50 6393 0.0 5.8 -11 10 0.0 0.0 0 0

100 6393 0.0 2.9 -5 5 0.0 0.0 0 0
200 6393 0.0 1.4 -3 2 0.0 0.0 0 0
500 6393 0.0 0.7 -1 1 0.0 0.0 0 0

Interpolation method: Linear splines
Time error (ms) Amplitude error (nS) Pearson Correlation CoefficientsDS (Hz) Counts mean STD min max mean STD min max mean STD min max kurtosis

1 5341 -60.8 295.6 -975 942 11.8 26.3 -19 498 0.94 0.10 -0.6 1.0 24
10 6375 -1.0 28.8 -56 53 0.2 0.4 0 8 1.00 0.00 1.0 1.0 979
20 6387 -0.1 14.4 -26 25 0.0 0.1 0 3 1.00 0.00 1.0 1.0 994
50 6392 0.0 5.8 -11 10 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995

100 6393 0.0 2.9 -5 5 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
200 6393 0.0 1.4 -3 2 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
500 6393 0.0 0.7 -1 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995

Interpolation method: Quadratic splines
Time error (ms) Amplitude error (nS) Pearson Correlation CoefficientsDS (Hz) Counts mean STD min max mean STD min max mean STD min max kurtosis

1 5878 -80.1 198.5 -1000 963 1.8 32.7 -987 497 0.97 0.08 -0.7 1.0 45
10 6391 0.0 1.5 -35 27 0.0 0.0 -1 0 1.00 0.00 1.0 1.0 995
20 6392 0.0 0.5 -5 5 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
50 6393 0.0 0.2 -1 3 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995

100 6393 0.0 0.1 -1 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
200 6393 0.0 0.0 -1 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
500 6393 0.0 0.0 0 0 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995

Interpolation method: Cubic splines
Time error (ms) Amplitude error (nS) Pearson Correlation CoefficientsDS (Hz) Counts mean STD min max mean STD min max mean STD min max kurtosis

1 5844 -72.0 186.5 -997 991 1.0 33.7 -1097 497 0.97 0.07 -0.6 1.0 49
10 6392 0.0 0.2 -2 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
20 6393 0.0 0.1 -1 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
50 6393 0.0 0.0 0 1 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995

100 6393 0.0 0.0 0 0 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
200 6393 0.0 0.0 0 0 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
500 6393 0.0 0.0 0 0 0.0 0.0 0 0 1.00 0.00 1.0 1.0 995
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